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Nonlinear H,, Control to Semi-Active Suspension
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Abstracts: Recently H control theory for nonlinear systems based on the Hamilton-Jacobi inequality has been
developed. In this paper, we apply the state feedback controller solved via Riccati equation to a semi-active
suspension model, two degree of freedom vehicle model, and show that it is effective for vibration control.
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1. Introduction

Recently, many researcher investigate nonlinear H
control theory, and its application is demanded. We
controlled semi-active suspension with nonlinearity by
nonlinear H.. control based on the Hamilton-Jacobi in-
equality in this report. Semi-active suspension control
reduces the vibration by varying its damping coefficient,
while active suspension by actuator. Since the plant is
bilinear in general, the design of the controller is not
easy.

We designed this controller by solving a linear Riccati
equation, and verified the effectiveness of the method
by simulations.

2. Plant

Suspension model used in this paper is two degree
of freedom model shown in Fig.1. This is the one con-
nected the body model and the wheel model by the
spring and the variable shock absorber. The dynamic
equations of the model are as follows.

myfy = —ke (y1 —y2) —c(§1 — 92) + k1 (yo — 1) (1)

mads = k2 (y1 — ¥2) + ¢ (91 — 92), (2)

where ¢ = ¢, + Ac. ¢, is the passive damping coefficient
and Ac is the variation.
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Figure 1: Suspension model

In this paper. we designed the controller for this
model, and examined the performance about its riding
conifort.

3. State space description of the
model

Generally. riding comfort and wheel traction is im-
portant as the performance of suspension. The esti-
mated quantity of riding comfort is car body’s acceler-
ation, and that of wheel traction is its relative displace-
ment to the road surface. So. we make this model’s
state equation, having these value as the estimated out-
put and &, as the state as follows.
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Now, we set §o as the disturbance from the road
surface w, and Ac as the control input w. Then its
state space description is as follows.

It is known that the disturbance from the road sur-
face w = gg is a white noise 1).

(tp = prp + B,,lw +Bp2(:v)u (3)
2z, = Cplil!p +Dp12(a:)u,
where
0
0 0
Bpa(z)=| . s |+ Dez(e) = 0
mi T3 —T4
T3—2Ty m;

my

Since this is a bilinear system, we cannot apply lin-
ear control theories to this system. In this report, we
controlled this plant by nonlinear H,, state feedback.
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4. Design of the control system

4.1. Nonlinear H,, control problem

Consider the following nonlinear systemn.

fl@)+gi(z)w +g2(x)u

. (4)
hi(x) +j12(x)u.

2

where &, w, u, and z are state, exogenous disturbance
input, control input, and output vector, respectively.
Suppose this system satisfies z = S,,,w and

5

(5)

Then nonlinear H,, control problem and conditions for
its solubility of state feedback are as follows 2).

MTjz=0. ji2Tj2=1

Nonlinear H,, control problem For the system by
(4), find the state feedback controller u = k{x) which
satisfies the following; The closed loop system S, is
internally (asymptotically) stable. In addition,

“Szwwllz
ol =

Szwllz.. = sup

weLy/{o}

Conditions for solubility The nonlinear H., con-
trol problem is solvable, if and only if there exist two
positive definite function, ¢(x) and p(x), which satisfy
the following two conditions.

¢ 1 8 ¢
32T Wa;;glgfa—i + TR+ p
18 ¢
- 4—%—¢;~92ng% <0 (6)
. o¢
dm g 520 p < o0 (7)

When there exist ¢(x) and p(), one of nonlinear state
feedback controllers can be given by

()= —Lg, 70

k() = 592 - (8)
i
4.2. Generalized plant
4.2.1. Filtering

Generalized plant made from (3) cannot satisfy the
above assumption (5) in nonlincar H,, control problem.
So, we filtered the acceleration of car body with a low-
pass filter which doesn’t influence the design, and added
25 and u as factors of the estimated output:

zp=[u yo—ym n—y2 Bo5 )7
Then the state space description of the model becomes
as

zs

Zf
Generalized plant made from these equations satisfies
the assumption (5). The block diagram is shown in
Fig.2. W{(s) is a frequency weight function for the con-
trol object.

= Afzs+ Bsiw +B(z)u

(9)
+Df12’u .

=Chnxs
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Figure 2: Generalized plant

4.2.2. Weight function

The weight function W(s) to the output z5 forms as
follows.
W (s) = diag[l, Wy, W;. W]
Here, the control object is
to reduce of car body’s acceleration,

and only Wi to car body’s acceleration is determined,

but not W,, Ws.

4.2.3. State equations of generalized plant
The weight function W;(s) is
Dw, + Cw,(sI - Aw,)” ' Bw,,
and state vector of generalized plant is
T = x5 zw, Tw, Tw,]".

Then state space description of generalized plant in-
cluding the weight function is

Az + Biw +Ba(z)u

z = Ciz +Dszu (10)
Czic )
where
A = Af © ] Bl = Bfl
BWCfl AW o
B;(z) Bpalz) , Cr1= y v
o DwCys Cw
Cy=1, Dis=Dyj
AW = diag(sz,sz‘Awﬂ
( 0 Bws 0 0
By=}|0 0 Bw, 0
| 0 0 0 By
Cw =diag(Cw:.Cw2.Cw1)
[0 Dw, © 0
Dy = {0 0 Dws 0
[0 0 0 Dw




4.3. Application to bilinear system

Comparing generalized plant (10) and (4). it is clear
that

flz) = Az. ¢gi(®)= B,
hl(w) = C’1$.

g2(x) = By(x).
Jiz(@) = Dya.

These satisfy the assumption (5). Substituting them
for the inequality (6). leads to

¢ 1 09 700 T T
92T AT T IR per BB Gy v e G Cimt e
1 3¢ r 0
. — < 0.
15o7 Ba(z) B2 () 5~ < 0 (11)

Here, we choose
¢(z) = 2T Pz, plz)=cz’z

as a positive definite function ¢(z) and p(x), where P
is a positive definite matrix and ¢ is a sufficiently small
positive value. The function ¢(x) satisfies

9¢

_—

oxT

7]

TP+$TPT.
ox

= Pz + PT«,
Substituting the above relatis to {11), we get
1
zT(PA+ ATP + :/;PBIBITP +C,TC, +el)z

- 2TPBy(2)B,T(z)Px <0. (12)

Choosing the positive definite matrix P in order to sat-
isfy the following Riccati equation,

PA+ATP+ 71—2PBlBlTP+CICIT+sI =0, (13)

the left-hand side of (12) becomes
—zTPB,(z)B," (z)Px

which is always less than zero. So, if P satisfies the
Riccati equation (13), Hamilton-Jacobi inequality (6)
is satisfied. Since ¢(x) and p(z) satisfy another con-
dition for solubility (7), nonlinear H,, control problem
has been solved. And. substituting them for {8). the
feedback control law is as follows 3).

(14)

5. Simulation

With the above method. we designed the controller
of semi-active suspension and made some simulations.

This simulations are compared with active suspen-
sion’s simulation results, which were designed by linear
H,, control theory. And parameters are determined to
optimize the passive response in simulations 4).
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5.1. Parameters

Parameters used in simulation are shown in the follow-
g table.

Parameter Value Unit
my 0.5 (L:gr
My 2.0 {kg)
ky 1.97 x 103 (N/mn)
ko 40.0 (N/m)
Cp 12.49 (N -s/m)

The low-pass filter to car body’s acceleration g, is

1

filter = ——u—
1+ 0.002s

and weight functions for the design are

0.143
Wy(s) = oo
1(8) = T 0.0159)2
and 400
Wo(s) = Wi(s) = —
2(8) = Ws(s) = T 30008

In addition. the maximum and minimum value of the
variable damper’s damping coeflicient ¢ = ¢, + Ac, is
set as follows.

50.0
0.0

Maximum value =

Cm.aa:

Minimum value =

Cmin
Finally. v and ¢ in Riccati equation (13) are

y=10e=10x10"*

5.2. Result and examination

5.2.1. Time response

We gave sine wave with different amplitude as the
disturbance from the road surface. The time response
of 43 are shown in Fig.3 and Fig.4. Semi-active suspen-
sion’s vibration is bigger than that of active suspension,
but smaller than the passive one. And the effectivenes
of vibration control in semi-active suspension is remark-
able as the amplitude of the disturbance becomes big-
ger. Wheun the vibration is small, » is less effective,
since Bs(x) in (14) is nearly equal to zero.

This characteristic is effective in terms that the con-
trol input doesn’t become big when the vibration is
small.

5.2.2. Frequency response

We compared semi-active control with active and pas-
sive control in frequency domain by using the M-series
signal as the disturbance and calculating the spectrum
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Figure 3: Time response of 42 (¢ = 0.1sin 10t)
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Figure 4: Time response of j» (9o = 5.0sin 10¢)

ratio between the output 3, and the disturbance. The
spectrum ratio G is given as

G =

Pout
oL (dB) |

dis

20logyq

wliere P,,; is the power spectrum of §js and Py, is that
of the disturbance. Note that, G is equal to the gain
(dB) in linear plants.

This results are shown in Fig.5 and Fig.6. It is clear
that the spectrum ratio of semi-active suspension de-
signed by nonlinear H., control is smaller as the am-
plitude of the disturbance is bigger.

6. Conclusion

In this design of semi-active suspension with non-
linear H, state feedback, we obtained the following
conclusions.

e We can calculate the state feedback control law
of nonlinear H,. control by solving linear Riccati
equation.

e The method is not so effective in case the ampli-
tude of the disturbance is big. but enough good
wlen the small vibration can be neglected.

e The control object is achicved.
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