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Abstract In this paper, two algorithms for computing multiple or clustered eigenvalues are proposed. The
algorithms can be applied to all kinds of Hermitian matrix unlike the existing algorithm. Characteristics of the

proposed algorithms is examined by MATLAB simulations.

Keywords Multiple eigenvalue, Eigenvector
1. INTRODUCTION

Remarkable progress has been made on numerical solution of
the eigenvalue problem during the last decade [1]-[7]. Most of
previous works have concentrated on the distinct cigenvalues.
However, many matrices have multiple eigenvalues and/or
clustered eigenvalues. Although those algorithms can be
applicable to a matrix having clustered eigenvalues, the
closeness of the eigenvalues in a cluster tends to cause all the
numerical procedure to lose efficiency, in the sense that
considerable computational effort must be expended performing
bisection shifts in search of eigenvalue interval endpoints.
Furthermore, if the desired eigenvalue has multiplicity greater
than one, all of them might not work. Thus, unless a matrix is
known to have distinct eigenvalues and spaced sufficiently apart,
experts advise not to use the existing algorithms. Recently, Noor
and Morgera [8] have proposed a method claiming that it works
well on multiple and/or clustered eigenvalues. Their method is a
valuable one. However, their algorithm needs to be
sophisticated; their algorithm may fail to a certain set of
Hermitian Toeplitz matrices.

In this paper, we propose two algorithms which are
applicable to all kinds of Hermitian matrices for computing
nultiple or clustered eigenvalues. The first one treats the
multiple and/or clustered eigenvalues as a multriple one and
works with the original matrix. The whole bag of tricks of the
second method is based on the interlacing theorem of Cauchy. It
employs the reduced matrix instead of the original matrtrix.
People may misunderstand the interlacing theorem. The pitfall is
stressed by introducing an example. The main contribution of
the proposed algorithms is their generality. That is, these
methods work well on any Hermitian matrix. Moreover, we
show the features of them through extensive simulations.
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2. INCLUSION INTERVAL

Most of the previous researches locate the inclusion interval
first and then locate the desired eigenpair. The inclusion interval,
denoted by [8,.5,], contains the desired eigenvalue, where &, and
b, are the lower and upper bound of the interval. Such an
inclusion interval can be obtained from either the LDU
factorization [2][3] or Levinson-Durbin algorithm [1][4].

An inclusion interval is obtained from the LDU
factorization of the matrix A-xJ/ of the form
A-x,I=1LDL '¢))
where A is a symmetric or Hermitian matrix, where L is a lower
triangular matrix with I's along their diagonals,
D=diag{d, d, --- d,]is a diagonal matrix, and L’ is a complex
conjugate transpose of L. For a given x,, a constant function
m(x,), which is called eigenvalue distribution and denotes the
m(x,)
eigenvalues that are strictly less than x,. Thus, for the /-th
eigenvalue, a valid inclusion interval must fulfill the conditions
m(p)=i-1 and m(b,)=i. Until these two conditions are satisfied,

number of negative entries of D, implies that 4 has

the LDU factorizations have to be done repeatedly with different
x, . An LDU factorization requires O(% n’) operations.

The Levinson-Durbin algorithm can be used to locate the
inclusion interval for a real symmetric or Hermitian Toeplitz

matrix. The computational complexity of the Levinson-Durbin
algorithm is Oln*). Consider the following Levinson-Durbin

algorithm for a symmetric Toeplitz matrix 7= (t,,) where #; =1,_;.
Levinson-Durbin algorithm

Initialization:



$u(x)= ‘1/(’0 _xk),

€ =1ly—X;.

Compute:
For 2<k<n~1.

ala) = el ) 1=} ) ),
b ix,)= - (lx, ) [‘t - li; ¢u-1(x: i :' s

=1

)
Ou (xg ) = ¢i,l—| (x, ) —Ou (xk )¢k—i,&—l(xk) , 1Si<k-1.
The ¢,(x,) satisfies the Yule-Walker equation.
o 4 o e, eyl [a
t.l ':0 ‘J:—z ¢21 = ':2 (3)
b G ot fegl |t
for j=1,--,n—1. Cybenko has shown that if £22 and
1 0 0 0
—®12- (xk) ! e 0 0
Lix)=| —tualn)  —duala) - 1 0, )

_¢t—u—l(xl) —4’1-21-2(’%) e =y (xk) 1
then
L (-’Q)(Tk —x,I,)L,(x,)=diag(e, (-":)’ el-l(xk)’ el(xk))~ %)
Because of Sylvester’s law of inertia, this implies that the
number of eigenvalues of 7, less than % equals the number of
negative values in diagle,(n), e.(x), - a(x), provided that
% is nondefective with respect to 7;. In order to ensure that any
other eigenvalues of 7, or any other eigenvalues of 7, is not
contained in the interval, we must refine the inclusion interval
(8,8, 10 (8,5.) by bisection and trial and error method until the
following conditions hold:
(i) m(5)=i -1 and m(p]}=i
(ii) &(8) >0 and ¢,(5,) <0
Those two methods, the LDU factorization and the Levinson-
Durbin algorithm, tend to lose efficiency when the eigenvalues
are placed very closely around the desired eigenvalue. Moreover
they may not work when there exist multiple desired eigenvalues
that are all identical. Of course, when all the eigenvalues are
distinct and separated apart, then those methods work well.

3. MAIN RESULTS

Failure or inefficiency in computing multiple or clustered
eigenvalues results from performing bisection shifts in search of
eigenvalue inclusion interval (4,8) of the i-th eigenvalue. For
multiple eigenvalue case, the conditions of existing algorithms
described in the previous section are not hold, which should be
satisfied to obtain proper inclusion interval. Consequently, the
existing algorithms fail in computing the multiple eigenvalues.

On the other hand, although the conditions might hold for
clustcred eigenvalues, a great number of computations are
required, which tends to cause all the algorithms to lose
efficiency. To overcome this problem, two approaches are
proposed in the next subsections.

3.1 The first approach
One method is to define the bound, |#, -] < Lim, to stop the

inclusion interval finding procedure and computing an
eigenvalue contained the interval. This method can compute the
multiple eigenvalue accurately. In the case of the clustered
eigenvalue, only one of the eigenvalues contained in the
inclusion interval is calculated and the error might be
proportional to the value of Lim. However, it is appropriate to
consider eigenvalues contained in the interval to be multiple,
since true multiplicities are reflected as an eigenvalue cluster in
practice. To efficiently compute an eigenvalue in the interval
containing multiple or clustered eigenvalues, we employ the
GMRQI-JKL which is an efficient algorithm to compute any
desired eigenvalue in a given interval [7]. Based on the above
discussion, the algorithm is summarized below. m(a) in the
algorithm denotes the number of eigenvalues of the matrix that
are less than a.
Algorithm I

Step I-Select: Find the eigenvalues 4,,4,,,,--,4,, 1Sp<g<n,
Using trial and error, select an interval (a,b) by bisection such
that m{a)< p—1, m(b) 2 q.

i=p

while i<gq

Step 2-Search: Search for the endpoint b, not captured by
trial and error such that (bg,b.,,) contains 4;. This is done by

bisection via Levinson-Durbin algorithm or LDU decomposition.
In the process, also detect, if any, the multiplicity m of multiple
eigenvalues using the condition, lbq —b4| <Lim,

Step 3-Locate: Once all the inclusion intervals are obtained:
a) Switch to the GMRQI-JKL method to find 4.
b) i=i+m

End While Loop

Remark 1. In this algorithm, it is needless to refine the
interval to assure the interval does not contain the eigenvalue of
the principal submatrices, provided the middle point of the
interval is not an eigenvalue of the principal submatrices, which
is impossible in practical application. Actually, termination for
this reason is never occurred in our simulation.
3.2 The second approach

Apart from the first approach, we solve the problem based on
the Cauchy’s eigenvalue interlacing theorem. According to the
Cauchy’s theorem, we can see that there exists an eigenvalue of
the principal submatrix of order n-m+1, C,.., in the given
interval, if the Hermitian matrix C, of order » has an eigenvalue
A, with multiplicity m. Therefore, we can find 4; easily by
working with the submatrix G, .., if the multiplicity is known.
The multiplicity can be found by employing the bound Lim
similar with the first approach. A similar idea of this approach
has been reported in [8]. However, their algorithm is not general,
in the sense that their algorithm does not cover all kinds of
Hermitian Toeplitz matrix. They asserted that “Cauchy’s
theorem implies that C,, must have an eigenvalue A, with
multiplicity m-1, if Cy has an eigenvalue A, with multiplicity
m.” They proposed an algorithm to compute a multiple
eigenvalue based on the above assertion. According to the
assertion, their algorithm employed the matrix C, .. in order to
compute the multiple eigenvalues with multiplicity m of the
matrix C,. Unfortunately, the assertion is not true. If the
assertion is true, the eigenvalue with multiplicity m in the matrix
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C, must have multiplicity one in the reduced-order matrix C, ...
However, some kinds of matrix do not follow the assertion.
Consider the following matrix C

f00. 0 0 0 0 0 10 10 100 100
0 200 0 0 0 0 0 10 10 100
0 0 200 0 0 0 0 0 10 10
0 0 0 20 0 0 0 0 0 10
el 0 0 0 0 2000 0 0 0 0
o 06 0 0 0 20 0 0 0 0
16 0 ¢ 0 0o 0 20 0 0 0
0 16 0 06 o 0 0 200 0 0
00 10 10 0 0 0 0 0 200 0
{100 100 10 10 0 0o 0 0 0 20

The eigenvalues of the matrix are 34.7671, 145.6496, 199.4267,
200.3092, 201.0000, 201.0000, 201.6908, 202.5733, 256.3504,
367.2329. Multiplicity of the eigenvalue 201.0000 is 2.
According to their assertion, the 9x9 principal submatrix C, has
an eigenvalue 201.0000 with multiplicity 1. However the
submatrix has eigenvalues 98.9341, 191.9798, 199.9138,
201.0000, 201.0000, 201.0000, 202.0862, 210.0202, 303.0659
and the multiplicity of the eigenvalue 201,0000 is 3. Note that
the multiplicity of the eigenvalue is increased and the conditions
of the Step 3 in the algorithm of Noor and Morgera are not
satisfied. In this case, their algoritin always fails. In our
algorithm, we check the multiplicity, denoted by p, of the
submatrix C,,,, and work with the submatrix C,, ,.,. This
process 1s repeated until the multiple eigenvalues are not
detected.  Consequently, the Algorithm I overcomes the
drawback of the Noor and Morgera’s algorithm. Ours proposed
as the second approach can be considered as a generalized
version of the Noor and Morgera’s algorithm. The algorithm is
summarized as follows.
Algorithm IT

Step 1-Select: Find the eigenvalues 1,,4,,,-,4,, 1S p<g<n,
Using trial and error, select an interval (a,b) by bisection such
that m(a}Sp——l, mb)zq.

i=p

while iS¢

Step 2-Search: Search for the endpoint b, not captured by
trial and error such that (b‘,b,,,) contains 4;. This is done by

bisection via Levinson-Durbin algorithm or LDU decomposition.
In the process, also detect, if any, the multiplicity m of multiple
eigenvalues using the condition, If lb,4 —b4| <Lim  Then
flagmultiple=true.
Step 3-Refine: Once all the intervals b <2, <b,, pSi<q, are
obtained:
a)Set a=b, E,=Eh) and B=1b,, B,=E,(8,).
b) For eigenvalue with multiplicity m{(1<m<a),
Repeat until flagmultiple=false
Set the matrix order »n to n-m+1
Ifn=1,then A, = 4,, i<k<i+m-1, and go to d).
Refine the interval (o, 8) to (o,f) with the submatrix
C,ma Such that the following condition (1) or (2)
holds.
Condition (1) - 1) m(a’) =i —1 and m(B) =
ii) ¢,(ar)>0 and ¢,(f) <0
Condition (2) - |§ - o/| < Lim
If Condition (1) holds, then flagmultiple=false
else m=m(g) - m(cr)

End Repeat Loop
¢) Switch to the MRQI [2][3] method to find A,.
d)i=itm
End While Loop

4. SIMULATION RESULTS

Needless to say, the proposed algorithms work well on the
matrix C introduced in section 3. Simulation result on the matrix
C is summarized in Table 1. Table 1 shows that both methods
identify multiple eigenvalues well. Note that the Noor and
Morgera’s algorithm always fails in that case since the reduced-
order submatrix still has multiple eigenvalues. Algorithm I
locates the true eigenvalues 100 percent correctly down to four
places of decimals in this example. Algorithm II locates three
eigenvalues slightly erroneously. However, it is not always the
case with numerical accuracy. Through study on the accuracy is
given in the next simulation.

On the other hand, in case that some eigenvalues of a matrix
are clustered, we overcome the problem by employing the bound,
denoted by Lim, in the algorithm and by considering eigenvalues
contained in the interval («¢,b) to be multiple when the condition
|6 -a|< Lim is satisfied. As the second simulation, we examine
the characteristic of the proposed algorithms for various value of
Lim. As the first step, we construct a Hermitian Toeplitz matrix
of order 100 having eigenvalues 24,, &=12,---,100, where
2,,,=12023%, and A,=10-s, Thus, the matrix has 100 distinct
eigenvalues theoretically. However, it is an example of clustered
eigenvalue problem. Table 2 shows the distribution of the
number of eigenvalues. Next, we apply the proposed algorithms
to the matrix for various value of Lim. The simulation results are
tabulated in Table 3 and 4. An important conclusion can be
drawn from the tables; there is a computational burden-accuracy
tradeoff. Therefore we must consider a permissible error bound
to select a value of Lim. Figure 1 and 2 show the absolute error
£=|A .~ .| of Algorithm I and II for various value of Lim,
respectively. Note that the smaller is the magnitude of the
eigenvalues, the greater is the effect of the Lim. For large
eigenvalues, the variation of the Lim has little influence on the
absolute error. Figure 3 shows the comparison results between
the two algorithms on the number of operations and the average
eigenvalue error. The Algorithm I has better accuracy as the
bound Lim increased while the Algorithm I as the bound
decreased. In the aspect of computational complexity, the
Algorithm IT has better performance for all value of Lim.

5. CONCLUSIONS

In this paper, we have proposed two algorithms for computing
multiple or clustered eigenvalues. The algorithms overcame the
drawback of the existing algorithm. The proposed algorithms
have a tradeoff characteristic between accuracy and
computational burden. A possible direction for future research
would be to develop an algorithm which gives more accurate
results with less computational effort for multiple or clustered
eigenvalues.
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Table 1. Simulation results on matrix C by the generalized
algorithm.

Eigen- True Estimated

values Algorithm I Algorithm 11
i, 34.7671 347671 34,7694
4, 145.6496 145.6496 145.6561
4, 199.4267 199.4267 199.4508
Ay 200.3092 200.3092 200.2999
4, 201.0000 201.0000 201.0000
Ag 201.0000 201.0000 201.0000
A, 201 6908 201.6908 201.6808
A 2025733 202.5733 202.5784
45 2563504 256.3504 256.3334
Ao 367.2329 367.2329 367.2329

Table 2. Distribution of the number of eigenvalue of a matrix of
order 100

10771 107°-} 107 107-] 107} 10%-| 107" § amount
1071101107 1107*110% 110210

mterval| 0O-

number| 11| 12} 13| 12| 13| 13| 13} 13 100

Table 3. Simulation results for various Lim on a matrix of order
of 100 having distribution of the number of eigenvalue as shown
in Table 2 via Algorithm I (unit:Mflops).

Lim Number of Operations
107 ' 93

Mean of Absolute Error
6.3337e-003

1072 240 8.1147¢-004
107¢ 341 1.8982¢-004
107 532 8.5131e-005
107 665 7.0447e-005
107 794 7.2647¢-005
1077 976 6.9786e-005
107 1,077 6.8064e-005

Table 4. Simulation results for various Lim on a matrix of order
of 100 having distribution of the number of eigenvalue as shown
in Table 2 via Algorithm T (unit:Mflops).

Lim Number of Operations Mean of Absolute Error
107! 28 2.7059¢-002
1072 88 2.5904¢-003
107 150 2.5307e-004
10 206 1.4598¢-005
10- 249 1.1611e-006
107¢ 279 9.8427¢-008
107 320 2.1498¢-009
10 347 8.5081e-011

Figure 1. Error performance of the Algorithm I for various Lim.
(a) Lim=10" (dash), Lim=10" (dot), Lim=10" (solid),
Lim=10"(dash-dot). (b) Lim=102 (dash), Lim=10" (dot),
Lim=10"% (solid), Lim=10"%(dash-dot).
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Figure 2. Error performance of the Algorithm I for various Lim.
(a) Lim=10" (dash), Lim=10" (dot), Lim=10" (solid),
Lim=10"(dash-dot). (b) Lim=10" (dash), Lim=10" (dot),
Lim=107° (solid), Lim =10"%(dash-~dot).
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Figure 3. Comparison results between the two algorithms.

(a) Average eigenvalue error. (b) Computational complexity.
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