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Abstracts The standard estimation and filtering theory are well known and has recently been incorporated
with the Hy, optimization techniques where the parametrizations of all estimators and filters are utilized. The
issue of reducing its order is always of interest. This paper presents a method for synthesizing low-order stable
state estimators. The method presented in this paper is based on the utilization of a free parameter function
contained in the parametrization of all state estimators. The results obtained in the paper are compared with
standard results on low-order estimators. Both results are shown to be the same in a sense of its orders,

but the approaches taken are largely different. It is also shown in the paper that the method can easily and
directly be extended to the Kalman filters and the H,, (sub)optimal filters. Consequently, the orders of all
state estimators, Kalman filters, and H filters are shown to be reduced down to the number of states minus

the number of outputs, respectively.

Keywords State estimator, Low-order state estimator,

(sub)optimal filter, Low-order H, filter.

1. Introduction

Modern control design techniques can be used to de-
sign an optimal full-state feedback design, where an es-
timation theory is to be incorporated.

For practical implementation, full-order estimator
(Kalman filter) is usually designed first and then re-
duced to a low-order estimator (Kalman filter) with-
out significantly degrading the performance and robust-
ness {8]. The full-order estimator (Kalman filter) can
be reduced through conventional model reduction tech-
niques such as modal residualization, balanced trun-
cated model reduction, singular perturbation approx-
imation, and Hankel approximation. Singular pertur-
bation approximation (also called balanced residualiza-~
tion) elaborates balanced truncated model reduction in
a sense of discarding the poorly controllable-observable
states by setting its derivative zero, not by simply trun-
cating.

H, filter is different from such state estimators in
that the Hy filtering problem is to find an estimate of a
controlled variable such that the ratio of the estimation
error energy to the disturbance energy (i.e., co-norm)
is less than a specified value. However, the problem of
reducing the order of H, filters may fall in the same as
the one of finding low-order state estimators.

All possible state estimators, Kalman filters, and Hy,
filters are characterized respectively. A common feature
in those characterizations is the existence of a free pa-
rameter function. Though the free parameter in the
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Kalman filter, Low-order Kalman flter, H

characterizations allows a certain degree of freedom to
designers, it causes the increase in the order of the state
estimators, Kalman filters, and Hy, filters.

The method presented in this paper for synthesiz-
ing low-order state estimators {(both deterministic and
stochastic cases) and low-order Hy, filters is different
from the conventional techniques, but is similar in con-
cept to 6] for low-order stabilizing controllers and (3]
for low-order H, suboptimal controllers. In that sense
the results shown in this paper can be considered as
extensions to estimation and filtering theory. The key
idea is to utilize a free parameter contained commonly
in the characterization of all estimators and filters, and
to delete subsystems associated with the unobservable
modes appeared in the full-order systems.

The paper is organized as follows. In Section 2, the
characterizations of all state estimators for determinis-
tic case and Kalman filters are summarized and then
the method of reducing the orders are presented. H,,
filtering problem is reviewed in Section 3 and it is then
shown that the reduction of its order can be treated in
a similar way. Conclusions follow in Section 4.

The notation adopted in this paper is fairly standard.
Ly denotes Lebesgue space of (real) rational matrices
whose elements are strictly proper and have no poles
in the imaginary axis. RH,, denotes Hardy space of
real rational matrices whose elements are stable and
proper. A transfer function matrix is represented in
terms of state-space data by G(s) = [A,B,C, D} =
C(sI — A)"'B + D, where A, B,C, and D are real ma-
trices of appropriate dimensions.



2. State Estimation

2.1 Deterministic Case

Standard estimator theory is well known, for example
[1,2]. Tt is further extended in [9] that if one particular
state estimator is given then all possible state estima-
tors can be generated in an affine fashion. Dual of the
results for the control problem may also be found in
[9]. Though freedom is given in the characterization of
all state estimators, it causes the increase in the order
of the state estimators. In this section, the problem
of reducing the order of full-order state estimators is
addressed.

The class of state estimators we consider in this sec-
tion are constrained in the following way. That is, we

require that the state estimate should be a stable proper
linear time-invariant function of the plant input and
output, and that in the absence of modelling errors and
noise, and for any input signal, state estimation error
should decay to zero (that is, be unbiased).

We consider the nominal plant without noise

& = Az + Bu
y=Ca (1)
where A € R™*", B € R™™, and C € RP*". Let H be
any matrix such that 4 — HC' is stable, then it is well
known that one corresponding state estimator is given
in observer form by

=A%+ Bu+ H(y — C#) (2)

Then all stable, unbiased state estimators are charac-
terized, for example in [9], and given by

E=2+Q(y-Cx) (3)

where Q(s) € RH is a free transfer function.
Now, by letting a state-space realization of a free pa-
rameter Q(s) be

Q(s) = [Aq’ qu C<17 Dq] (4)

where A, € R™*™, B, € R**™, C, € RP*", and D, €
RP*™, we obtain a state-space expression of all stable,
unbiased state estimators given by

Fo=(( "5 4 ) (5 )

(1-D,C Cy ), (0 D)

It is clearly shown in the expression (5) that all state
estimators F'(8) is stable and its order is n + ng. This
implies that though the freedom parameter Q(s) allows
the designer a certain degree of freedom on designing
the state estimators, it may unnecessarily increase the
order of the state estimators by ng. The issue of reduc-
ing its order is always of interest in view of practical
implementation. In the following, a method for synthe-
sizing low-order stable state estimators is presented.
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To reduce the order, we apply a state similarity trans-
formation using a nonsingular matrix

T:(gg I‘iq) 6)

where X € R™*" shall be determined later on. Then
the new state-space realization of all state estimators
can be expressed by

F(S):(( A—HC 0 )
'\ =XA+ XHC -B,C+ A X A, )’
B H
~XB -XH+B, )’

(I-DLC+CX Ci),(0 D, )
(7
So, if the following two matrix equations are satisfied
for a certain matrix X,

AX — X(A—HC) = B,C .
D,C—-CX 1 (8)

then the realization of (7) can be reduced to the follow-
ing low-order realization:

F(s)=[Ap( =XB ~XH+B;),Cp, (0 Dy )]
) 9)
by deleting a subsystem associated with the unobserv-

able modes.
Obviously the order of the low-order state estimators

expressed by (9) is only ng, that is much less than the
full order, n+4 n,, of the expression (7). Note that since
A—HC is stable, the states of the subsystem associated
with A — HC can be truncated without breaking the
stability of the stable estimators. Note also that the
low-order state estimators Fr(s) in (9) is stable since
A, is stable. This means that low-order stable state
estimators can always be obtained.

Two equations in (8) are similar to those appeared in
(3,6, where it is proved that the solution always exists
in case of ny = n — p. Hence it is not difficult to show
that the solution matrix X to the two equations in (8)
always exists also in case of n, = n — p. Here we briefly
explain how to solve the two equations, leaving the in-
terested readers to refer to the detailed procedure in
[3,6]: The first equation of (8) is of a Sylvester equation
type but is different from a standard Sylvester equation
in that the coefficient matrices in the equation are ele-
ment matrices of the free parameter function Q(s). So,
the first equation is solved by making use of freedom
in the coefficient matrices and by a partitioning tech-
nique.; The second equation is then easily solved since
it is a linear matrix equation having coefficient matrices
again from element matrices of Q(s).

We therefore conclude that the order of all stable
state estimators can always be reduced down to n — p.
The result obtained here may be compared with the

well known standard results on reduced order estimator
theory, for example [1,2], in that though the technique



used is different, the order of low-order state estimators
is equal to the plant state numbers minus the output
numbers.

2.2 Kalman Filters

A Kalman filter can be incorporated with the
LQG(linear quadratic Gaussian) control to provide an
estimate of the state, in case the state variables in a
stochastic system are not available.

Consider the time-invariant signal generator, having
process disturbance w and measurement disturbance v:

& = Az + Bw,z(0) = 0
z=Lx
y=Czx+ Dv

(10)

in which DDT = [ is assumed for all times of interest.
The filtering problem is to find a causal, linear time-

invariant filter F(s) such that 2 = F(s)y is an optimal
estimate of z = Lz, with L a continuous matrix valued
function. Optimality here means that the 2-norm of
the average RMS power of the estimation error, i.e.

IRll2 = limr-.E{} f3 (2 ~ L) (2 — La)dt}}
(11)
is minimized, with R : [wTvT|f — # — z. The Kalman
filter is the optimal solution to the problem defined by
(11), and the optimal filter is given in [5] by

i=A¢+YCT(y - C2) (12)
2=1L%

in which Y is the stabilizing solution to the Riccati
equation:

AY +YAT —YCTCY + BBT =0 (13)
where the stabilizing solution means that A —YCTC is
stable.

All stable filters with prescribed performance «y that

satisfies ||R|]2 < v are characterized in [5] by

2=Li+Qly—Ct) (14)
in which & is the optimal state estimate, and Q € RH
e Q3 + trace(LY L) <+ (15)

To obtain the low-order Kalman filters, the same
technique used in the previous section can be alpplied
to the characterization of all full-order Kalman filters
given in (14). Now, by letting a state-space realization
of a free parameter Q(s) be Q(s) = [4,, B, Cy, D,] asin
{(4), a state-space expression of all stable Kalman filters
is obtained by

F(s):{(A“_gfgC gq)(yzgj) (16)
(L-DeC Cg),Dy

As in the case of stable state estimators, the order of
all stable Kalman filters F'(s) is also n+n4 and thus the
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free parameter Q(s) increases the order of the Kalman
filters by ng. So, by using the same technique as in
the state estimation case, we can derive the state-space
realization of low-order Kalman filters. That is, if the
following two matrix equations are satisfied for a certain
matrix X,

AX - X(A-YCPC)=B,C (17)
D,C~-CyX =1L

then the realization of (16) can be reduced to the fol-
lowing low-order realization:

F,(s) = [A;, -XYCT + B, C,, D] (18)

which is also stable and largely depends on the element
matrices of Q)(s).

3. H, Filtering

The H filtering problem is to estimate the output z
using the measurements y. The problem was considered
in, for example, [4,11].

Suppose the signal is'generated by the time-invariant
state-space system:

* = Az + Bw,z(0) =0
z=Lx
y=Cz+ Dv

(19)

in which DDT = [ is assumed for all times of inter-
est. Unlike the Kalman filtering problem, the process

disturbance w and the measurement disturbance v are
in Ly, i.e. unknown deterministic diturbances of finite

energy. The H filtering problem is to find an estimate
of z == Lz of the form 2 = F(s)y such that F(s) is sta-
ble and the ratio of the estimation error energy to the
disturbance energy is less then 2, i.e.

2—Lx||2
maz il = IR, <2

(20)
for alld = [wTvT|T € Ly, where the mapping system R :
d — (2 — L) is stable. We shall assume that (4,C) is
detectable, and that (A, B) has no uncontrollable mode
on the imaginary axis.

All Hy, stable filters such that the system R is stable
and satisfies (20) are generated in [5], in a form of lower
linear fractional transformation, by

1(Fa, Q)
where Q € RH, ||Qlloc < and
Fa(3) = [A = Yoo OFC, ( YouOT —y2Y, LT ),

(%)(730)
(22)

in which Y, > 0 is a stabilizing solution to the algebraic
Riccati equation:

F(s) = (21)

AYo + Yoo AT — Yo (CTC — y2LT L)Y + BBT =0
(23)



where A —Y,.(CTC —~~2LT L) is asymptotically stable.

The results above on the H, filtering problem are
the analogue of the Kalman filtering results mentioned
earlier. The key differences are in the Riccati equations
(13) and (23) which are very similar to the covariance
equations for the Kalman filtering problem with excep-
tion of the term 7 2Yy LT LYx. Thus, in Hy filtering,

the states to be estimated influence the filter itself un-
like in Kalman filtering where the optimal estimate of

any state-functional is obtained from the optimal state-
estimator. Note that as v — oo, the Hy, filters ap-
proach the standard Kalman filters.

By letting a state-space realization of a free param-
eter Q(s) be Q(s) = [Aq, By, Cy, Dy as in (4) and by
using a state-space realization of the linear fractional
transformation, all stable Hy, filters F(s) = Fi(F,, Q)
in (21) can be expressed in a state-space realization by

[( A-YCTC+ vy %o LTD,C —y2Yo LT D,
-2 T ’
—7*BeYL A,
Yol' \ (y or 2Dy IT C
B ’ ( 00 - g+t oo q ) ’Dq}

q
(24)
It is also clear that the full order H, filters is of
n + ng and that the same technique used previously
can be alpplied to the problem of reducing the order of
all Hy, stable filters. That is, the following low-order
realization F,(s) of all H, filters can be obtained from
the realization of (24) by:

E.(3) = [é&qq — Y2 XYW LTCy, (25)
By — XYoo(CT —472LTD,), Cy, Dy
if the following two matrix equations are satisfied for a
certain matrix X,

AgX — X[A - Yo(CTC —~2LTL) = B,C (26)
DC —-CeX =L

Note that though the two equations in (26) can also
be solved in a similar manner to the previous cases in
Section 2, the stability of the low-order H,, filters is not
automatically guaranteed, in contrast to the low-order
state estimators and the low-order Kalman filters.

4. Conclusions

Problems of synthesizing low-order stable state es-
timators, low-order Kalman filters, and low-order H,
filters was considered respectively in this paper. By
properly manipulating a free parameter function con-
tained commonly in the characterizations of all state
estimators, Kalman filters and H,, filters, it was shown
that the proposed approach can be applied to all the
cases considered in this paper in a unifying fashion.

The same technique adopted in this paper may be
extended to the finite horizon cases for both LQG and
H filters. H, filtering problem may also be treated in
a similar way.
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In practice of controller reduction, the error criterion
in reducing the controller is degradation of the total
performance instead of the error between the full-order
controller and the reduced one, as in {7} for the LQG
controller reduction and [10] for the H, controller re-
duction. The method presented in this paper provides
a systematic way to synthesizing low-order state esti-
mators, Kalman filters, and H,, filters. However, the
method lacks such a closed-loop consideration and thus
it will be worth in future research to address this issue.
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