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Abstract In this paper, estimation error bounds of the optimal FIR (Finite Impulse Response) filter, which is
proposed by Kwon et al.[1, 2], are presented in discrete-time systems with the model uncertainty. Performance
bounds are here represented by the upper bounds on the difference of the estimation error covariances between
the nominal and real values in case of the systems with the noise or model parameter uncertainty. The estimation
error bounds of the discrete-time optimal FIR filter is compared with those of the Kalman filter via a numerical
example applied to the simulation problem by Toda and Patel{3]. Simulation results show that the former has

robuster performance than the latter.
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1. INTRODUCTION

Since the mathematical model of real systems gives only
an approximate description of them, there always exist un-
certainties in the system model. Therefore, the robustness
to the model uncertainty has been one of hot issues in sev-
eral areas including control, estimation, and system identi-
fication. It has been shown that, when the precise knowl-
edge about the system configuration as well as a prior:
statistics of the noise models are not known, the Kalman
filters may show poor performance and even divergence
phenomenon(l, 2, 8, 9]. Also it is known that Kalman filter
has a poor performance on systems with model uncertainty
so that the estimation error bounds increases. Previous re-
search to assess the effect of modeling error on Kalman filter
performance has been reported in [3]-[6].

In order to overcome these problems in Kalman filter,
lots of methods are proposed by many researchers. As one
method among them, Kwon et al. [1, 2] have introduced the
optimal FIR filter, and Yoo and Kwon [5] have analyzed
the estimation error bounds of the optimal FIR filter for
continuous-time systems. The bounds are calculated from
the estimation error covariances of the continuous-time op-
timal FIR filter. Performance error bounds are here repre-
sented by the upper bounds on the difference of the estima-
tion error covariance between the nominal and real values
in case of the systems with noise or parameter uncertainty.

In the current paper, the estimation error bounds of the
discrete-time optimal FIR filter due to model uncertainties
are analyzed. The performance bounds of the filter are de-
rived under the assumption that the system parameter and
noise statistics are imperfectly known a priori. The estima-
tion error bounds of the discrete-time optimal FIR filter is
compared with those of the discrete-time Kalman filter via
a numerical example applied to the system model in Toda

and Patel[3].
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2. DISCRETE-TIME OPTIMAL FIR FILTER

2.1 Notation

The notation || - || is denotes the Euclidean 2 norm of
an arbitrary vector, and A(-) is a model uncertainty in any
function. The notation W @ Z is used for the Kronecker
product of matrices W and Z. The column string of an nxm
matrix W, denoted by cs(W), is defined as the following
nm-dimensional column vector:

C.S(W) = [’lU11,. (1)
where wji is the (j,k)th element of W. It can be easily

shown that the trace of an n X » matrix W can be written
as

T
e s Wnly o Wim -« Wnm]

tr(W) = [es(In)]  es(W), (2)
where I, is the n x n unit matrix. Also for any matrix Z

lles(2)1l = 111, 3)
and for conformable matrices W, Y and Z (7]

es(WYZ) = (ZT @ W)es(Y). (4)

From the relations (3), (4) and the triangular inequality
of the norm, it can be shown that any conformable matrices

W, Y and Z satisfy the following inequality(3, 4]):
[trWY Z) < I ZWI|IY}]. (5)

The above inequality (5) will be used in Section 3 to
derive the bounds of the estimation error covariance of the
discrete-time optimal FIR filter.

2.2 Discrete-Time Optimal FIR Filter
It is assumed that the true system is described by the

discrete time-varying state-space model
z(i+ 1) Aiz (1) + Biw(i)
20) = Gizli)+ (i), (6)
where z(-) and z(-) are the state vector and the observation
vector, respectively. The initial state vector z(0) is a ran-



dom variable with E[z(0)] = m¢ and Cov[z(0)] = P and
the system noise w(-) and the observation noise v(-) are zero-
mean white with covariances E[w(:)wT(j)] = Q:6;; and
E[v(3)vT(§)] = Vii;, respectively. It is also assumed that
z(0), w(-), and v(-) are uncorrelated each other. Though
all matrices A;, By, C;, Q; and V; are time-varying, the sub-
script 1 which denotes time-dependence will be deleted here-
after for the notational convenience.

The discrete-time optimal FIR filter (¢ | N) for the state
z(-) of the true system (6) is presented in [1] as follows:

N-1
B(i| N)= Y H(i,k; N)z(k) (7
J=E|2() -G | M), (8)

where J is the cost function of the filter, and the impulse
responses H (i,-; N) is calculated by

H(@i,jin+1)=[ - R(i,n + )TV IClAH(i, jin), (9)
0K N—i4+j<ng<N-1

H(i,j;N —i+3j)= RGN -i+j)cTv-!?

R(i,n + 1) = R(i,n) - R(i,n)CT[I + CR(i,n)CT] ' CR(i,n)
-1<n<N-1 (10)

R(i,-1)=PE-N-1,i =N —1)=Coulz(i - N - 1)].

R(i,n) = AR(i,n)AT + BQBT.

P(i+1,i+1)= AP(i,i)AT + BQBT ' (11)
P(0,0) = Py.

If the system has the model uncertainty, the discrete-time
FIR filter £,,(i | N) is given for the system represented by
the incorrect model {A., Bm,Cm, Qm, Vm} as follows :

N-1
Em(i | N) = > Hm(i,k; N)z(k), (12)

k=1
where the impulse response Hm (i, k; N) is calculated by the
same algorithm (9)-(11) using Am, Bm, Cm, Qm, Vin instead
of A, B,C,Q,V, respectively. If the model uncertainty is
described by an additive parametric one, i.e., A, = A+
AA, Crn =CH+AC, Q@ =Q+ AQ, and Vi, =V + AV,
the relationship between Hn (1, k; N) and H(i, k; N) is also

represented by

Hon(i,k; N)=H(i,k; N) + AH(3, k; N). (13)
The estimation error covariances of the discrete-time FIR

filters (7) and (12), which are defined by
RG,N) i= Ela(i) - 2(; | M][() - 3G | N7 (1)

Re (i, N) = Bl(i) - &m(i | N)][e(i) = 2m(i | N7, (15)

have the following relationship:

Lemma 1 If the incorrect model is represented with
A, B, Cm, Qm, Vi, and P, the real estimation error co-
variance R-(i, N) can be represented as follows:

R.(i,N) = R(i, N) + U(i, N), (16)

where

UG, N) = Z Z AH(,j; N)R.(j, K)AH(, ks N) (17)
J=i=N k=i=N
and R.(j, k) := E[z(3)z"7(k)]. U(i, N) satisfies the following
recursion:
U(i,n+1) = [I — K(i,n + 1)ClAUG, n)AT [ — K(i,n + 1)C] T
+AK(L,n+ DR(i=N+n+1,i-N+n4 DK (i,n +1)
t—N+4+ni—N+n
+ Z Z [[I—K(i,n+l)C]AH,T,;(i,k;n)FT(:,n)
j=i—N k=i-N
+F(i, n)Hm(i, 5 n)AHT (5, k; n)AT [ = K(i,n + 1)) T
+F(i, n)Hm(i,];n)H.z;(i,k;n)FT(i,n)] (18)
U(i,-1)=0, —-1<n<N-1,
F(i,n) = I = Kn(i,n + 1)Cm]AA
—[K(i,n + 1)AC + AK(i,n + 1)Cn]A.
K(i,n) = R(i,n+1)cT
Km(i,n) = Rpn(i,n+1)CT
AK(i,n) K. (i,n) - K(i,n).

Proof : The definition of R.(i, N) gives
R.(i,N)
= Blz(i))— 2 | N)+ 2G| N) = &m(i | N))
x[z(i) = (i | N) + £(i | N) ~ &m(i | N)]T
= EBle(i) - 26 | Ml=G) ~ &G | M)}
+E[EGE | N) = em(i | N2 | N) = 2( 1N))T. (19)
The second equality of (19) comes from the orthogonality
of the optimal FIR filter £(: | N). The first and second
terms of (19) are equal to R(i, N) and U (i, N), respectively.
Hence (16) is derived. The equations {9) and (13) yield
AH(i,j;n+1)=[I - K(i,n + 1)C]JAAH(i, j;n)
+{[1 — Kp(i,n +1)Cm]aA — [K(,n + 1)AC

+AK(i,n + 1)CmlA} Hm(i,§in), (20)
AH(,j;N —i+j)= AK(®i, N —i+j).

Substituting (20) into (17) gives (18). Hence the proof is
completed. ooo

Although (16)-(18) describe the true estimation error co-
variance R, (i, N), which can be taken as the performance
measure of the discrete-time FIR filter, it cannot be read-
ily calculated. That is because the modeling error matrices
are generally not known exactly. Therefore, it is desired to
obtain the upper and lower bounds of R,(¢, N) under the
modeling errors such as uncertainties in model parameters
and noise statistics. These bounds will provide a measure of
the worst performance to be expected from the filter based
on imperfect knowledge of the system configuration, noise
statistics and initial covariance.

3. ESTIMATION ERROR BOUNDS
3.1 Under Noise Uncertainty

In this section, the upper and lower bounds of the esti-
mation error covariance R (i, V) will be derived in case the
noise statistics Qmn and Vi, are imperfect, but the system
matrices A and C are known exactly.

Theorem I  If there is no parameter uncertainty in the sys-
tem (6),1.e., AA = 0 and AC = 0, then the estimation error
bound of the discrete-time optimnal FIR filter (12) due to the
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uncertainty in the noise statistics is given by
|tr[R-(i, N) = RG, N)}| < am(5), (21)

where

N-1
Am (i) = Z eV, k+ MG KT(NE+ 1), (22)
k=-1
and ®(N,-) is the transition matrix of [I — K(¢,n + 1)C]A
satisfying

Hi

(N, k)

N I—-K@En+1)ClA N>k
{ | RN )] o)

In N=k
where
M(i,n) =

AK(i,n+ DRz(i—N4n41,i=N+n+1)aK (i,n+1)
1-N4ni—N+n

+ Z Z (17 - KGion + DC1ABLG 6 FT G n)
j=imN k=i—N

FFL(, ) Hm(, i )aH T (k) AT (1 = k(i n+ 1)) T

+Fy (i ) Hm(i, 35 ) H (6, ki m) Y (3, ) (21)
Fi(t,n):= —AK(i,n4+1)CA

Proof : In the case where the parameter uncertainty AA =0
and AC =0, (18) gives
N-1
UG, N) = Z (N, k+ 1IM(, k)BT (N, k + 1).
k=-1
Taking traces of both sides of (16), we get
tr[R,(i,N)] < tr[R(i, N)]
N1
+ Z |er®(N, k + MG, )BTV, k + 1]
k=-1
Applying the property (5) to the above inequality, the fol-
lowing bound of the estimation error covariance is obtained:
tr[R.(i, N)] - tr[R(z, N)] < Ami (1),
which completes the proof. ooa

3.2 Under Parameter Uncertainty

Now, in this section, it is assumed that the noise statis-
tics are exactly known, f.e., AQ = 0 and AV =0, but that
there exists the modeling uncertainty in the system param-
eter matrices. Here, the upper and lower bounds of the
estimation error covariance R, (i, N) is derived as follows:

Theorem 2  If there is no noise uncertainty in the system
(6), i.e., AQ = 0 and AV = 0, then the estimation error
bound of the discrete-time optimal FIR filter (12) due to the
parameter uncertainty is given by

|tr[Re (5, N) = R(i, N)]| < Ama(d), (25)
where
N-1
Amy(i) = Z BN,k + DI, n)IIBGE nlvG, Il (26)
k=~1

i=N4n i-N+n

ali,n) = Z Z |t - KGon + 1)C14]|

1=t~N k=i—-N
X Hem (i, & n) £, n)|l

i-N4ni—N+n

Blmyi= Y Y IFG I HAG, i)

J=i= N k=i-N

xWAH, kin)iiIlf - K(i,n +1)C]A|

i-N+4ni-N+n

W)= Yy IFG MG

j=i-N k=t=N

Proof : In order to obtain the estimation error bound due to
the model parameter uncertainty with AQ = 0 and AV =0,
the following equation can be derived from (18):

tr{R(i, N)] = tr[R(z, N)]

N-1
+ > tr[®(N,k+1)E(i, k)T (N,k+1)]  (27)
k=—1
where
E(i, n) :=

AK(i,n+ DRz(i~N4+n+1,i—N+n+1)AKT(i,n+1)
t—N4ni—N+4n

+ Z Z [[I—I\’(i,n+ 1yClaHL (G, ks ) FT (6, n)
j=i—N k=i—N
+F(i, Y Hm(i, 5; mAH T (4, ks n) AT — K(i,n 4+ 1)) T
+F(, n)Hm(i, 5, M HL G, k; n)FT(.‘,n)]. (28)
The upper bound on (27) is obtained as follows:
tr[R,(i, N)] = tr[R(i, N3)
N-1
+ Z tr[®(N, k + D{AK(,n +1)
k=-1
‘R.Gi-=N+n+1,i-N+n+1)AK (¢G,n+1)
i—-N4ni=N+4n
+ Z Z [ — K(i,n + 1)CJAHT (i, k;n)FT (i, n)
J=i=N k=i-N
+F(i, n)Hom(3,5;n)AHT (i, k;n)AT ~ K(i,n + 1)C)T
+F(i,n)Hm(i,35n)H ] (5, kin)FT (i,n) }
@T(N, k + 1) (29)
Next we bound each of the terms on the right-hand side of
(29) from above:
)n[@(N,k+1)AK(.‘,n+1)R,(i—N+n+ Li-N+n+1)
BKT G0+ 1)8T (N, k + 1)) |
< )|®(N, k+ 1)AK(G, n+ DAKT (i,n + 1)@T(N, k + 1)||
JR:(i = N+n+1,i—=N+n+1) (30)

where we have used relation (5) to obtain the inequality.
Hence, it can be obtained

[|®(N, k+ 1)AK@E,n + DAKT (i,n 4+ 1)@T(N, k + 1)]|
NR:G~N+n+1,i— N+4+n+1)
< RN E+ DIPaKG,n + D)
HR,(i-N4+n+1,i-N4+n+1) (31)

The bounds on the remaining terms are obtained in a similar
manner using (5) as follows:

i-N+ni—N4n
Z Z |er [8(V. & + 1)l = K(,n +1)C)4
j=1—N k=i=N
HT (i, k;n)FT (i, n)
+F(i,n)Hm (i, j;in)AHT (i, k;n)AT [ - K(i,n + 1)C]T
FFP( Y (6,3 n)YHE (G kn)FT (i, n)®T (N, k + 1)][

i-N4ni-N+n

Z Z [12(N, &+ DI = K(,n +1)Cla

j=i=N k=i=N
HI (5, kn)FT (5,n)@T (N, k + 1))
BN, k + VF(i,n)Hm(i,§;n)AHT (i,k;n)

IA
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Table 1 Allowable bounds of discrete time optimal FIR

filter and Kalman filter.

Kalman Optimal  FIR filter

filter N=5 N=10 N=15§ N=20
Any (i) 11.3586 7.3713 7.8259 8.6731 9.1984
Any(i) 12.6989 8.2657 9.2165 9.8536 10.2478

AT - K@, n+ 1DCT8T (N, k + 1))

HI®(N, &+ 1)F(@E, n)Hm(i,§;n)

HL G kin)FT (i, )87 (N & + 1))

i-N+4ni—-N+n

< DT DT [IEV R DIPI - KGon + 1)CTA)

J=i-N k=i—N
WHm (G, ks n ) F(E, n)l|
HISN, &+ DIPIFG, )| Hm (i 53 mIIAHG,
N~ K@@, n+1)ClA|
HIR(N, k + DIIFG, mI I Hm G, 5501
The required allowable bound is then derived
tr[R-(i, N)] — tr[R(i, N)] < Ama(d),
which is equivalent to eq(25). This completes the proof of
the theorem. oo

k;n)ll

(32)

It in noted that bounds of ||AAlf, |AC]|, |AQIl, ||AV]|,
and || AK|| should be given in order to compute performance
bounds by Theorem 1 and Theorem 2. The upper bound of
[|[AK}| can be calculated by the method proposed in {3] or
assumed to be given.

4. SIMULATION

The estimation error bound of the discrete-time opti-
mal FIR filter is here analyzed via a numerical example,
which applies the filter to the estimation problem for a time-
invariant process given in Toda and Patel [3]. The result will
be compared to that of the Kalman filter, which is presented
in {3]. The time-invariant process is modeled by

. [ Am 0 . 1]
z(1+1) = [ Avo Ams ] z(1) + [ 0 ] w(1)
(i) = [ ] )+ v().
The numerical value for the model are specified as
Aml = —1/3, Am2 = 1/10, and Am3 = —1/4.

The model variances of the zero-mean white noises are
qm = E[w(k)z] =10; v = E[v(k)2] =

The parameter Am2 and Az are assumed to be correct and
the modeling error bounds for the parameter Anyy, ¢gm and
vm are given by

[AAm1| 0.1, |Agl <1, |Av| <1,

Bounds of estimation error covariance for the discrete
time optimal FIR filter and Kalman filter are summarized in
Table 1. This table shows that bounds of the discrete-time
optimal FIR filter are smaller than those of Kalman filter
and hence, in both the case, the former has better robust
performance than the latter when applied to systems with
incorrect noise statistics and model parameter uncertainty.

5. CONCLUSIONS

In this paper, the performance bounds of the discrete-
time optimal FIR filter for the discrete-time system with
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model uncertainty have been analyzed. The trace of the
difference between the estimation error covariances of the
true and nominal systems is here taken as the performance
measure. Two types of uncertainty have been considered
here; one is the uncertainty in the noise statistics, and an-
other is the parameter uncertainty. The FIR filter is applied
to the estimation problem in time-invariant processes given
in [3]. The simulation result has shown that the discrete-
time optimal FIR filter has better robust performance than
Kalman filter.
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