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Abstract: In this paper, we describe the com-
position of frequency response bands based on ex-
perimental data of plants (controlled systems) with
uncertainty and nonlinearity, and the robust stability
evaluation of feedback control systems. Analysis and
design of control systems using the upper and lower
bounds of such experimental data would be effective
as a practicable method which is not heavily depen-
dent upon mathematical models such as the transfer
function. First, we present a method to compos-
ite gain characteristic bands of frequency response
of cascade connected plants with uncertainty and a
recurrent inequality for the composition. Next, eval-
uation methods of the robust stability of multi-loop
control systems obtained through feedback from the
output terminals and multi-loop control systems ob-
tained through feedback into the input terminals are
described.

In actual control systems, experimental data of fre-
quency responses often depends on the amplitude of
input. Therefore, we present the evaluation method
of the nominal value and the width of the frequency
response band in such a case, and finally give numer-
ical examples based on virtual experimental data.

1 Introduction

Analysis and design of control systems using the up-
per and lower bounds of experimental data of fre-
quency responses would be effective as a practicable
method which is not heavily dependent upon math-
ematical models such as the transfer function. This
paper presents the composition method of frequency
response bands based on experimental data of plants
and control elements with uncertainty and nonlin-
earity, and the robust stability evaluation of feed-
back control systems. The composition of frequency
response bands is represented sequentially by a re-
current inequality, and the evaluation of the robust
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stability is expressed by a series of inequalities pro-
vided in the reduction process of the block diagram.

In actual control systems, experimental data of fre-
quency responses often depends on the amplitude of
input. Therefore, we present the evaluation method
of the nominal value and the width of the frequency
response band in such a case, and give numerical ex-
amples based on virtual experimental data.

2 Cascade Connection

The frequency responses given from experimental
data are written as nominal systems and their mul-
tiplicative perturbations as follows:

Gi(w) = Gr(jw)(1 + A (jw)),
(k=172""',N)a

where (), is a parameterized nominal model of a
controlled system and Ay is an unstructured uncer-
tainty. They are represented only as a band where
the data exists, because of the uncertainty in the high
frequency range and the nonlinearity on the input
terminal. That is, the upper bound of the uncertain
term of frequency responses can be written as

1A (jw)] < pe(w), (2)

where pi(w) is a frequency-dependent radius. The
following discussions can be applied to any case even
though the perturbation Ay(jw) changes in Eq. (1)
according to how the nominal system Gy (jw) is con-
sidered.
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Fig. 1 Cascade-connected system.



the uncertainties when Eq. (9) is satisfied.

On the other side, for the case where the k-th nom-
inal feedback subsystem is unstable, we can see that
the k-th feedback control system is unstable regard-
less of the existence of the uncertainties when Eq.
(9) is satified.

.....................................................................

Fig. 4 Multi-loop control system-2.

As for a multi-loop control system as shown in Fig.
4, the robust stability condition or the invariant con-
dition of the dynamic characteristic is written by the
same form as Eq. (6), i.e,,

[(1+ Ci(s)Gr(s)) "' Ca(s)Gals)| < 1/p1(s), (11)

as to
|AL(s)] < pils), seT.

A series of inequalities for the robustness condition
of the dynamic characteristic corresponding to Eq.
(9) is obtained by sequential reduction from the sub-
system S; as follows:

I(1+ Ci(s)Gk(s) T Ci()Gx ()] < 1/|Dx(s)], s (Glg),

where we assume
Gi(s) = Gi(s)(14+Cr-1(8)Gr-1(s)) " Gr—1(s), (13)
Go(s) =1, Co(s)=0.

The upper bound of the absolute value of transfer
characteristic Dy (s) is the same as that in Eq. (10).

Inequality conditions Eqs. (11) and (12) are same
form as those of the multi-loop control system-1, that
is, Eqs. (6) and (9). However, if we handle variables
and transfer functions are assumed to be a vector
and a matrix, the order of the matrix expression will
be important.

4 Amplitude Dependencyl®!

The experimental data of those frequency responses
often depends on the amplitude of input in an ac-
tual system. In such a case, the frequency response
given from experimental data is written as a nominal
system and its multiplicative perturbation as follows:

Gi(ag, s) = Grlak,s)(1 + Ar(ak, s)), s€l. (14)

By considering that the frequency response charac-
teristic varies with the amplitude parameter a;, the
analysis and design of the control system using math-
ematical model becomes more realistic.

When feedback takes place for such systems, it is
necessary to examine not only the condition of a mere
robust stability but also the condition of invariance
(robustness condition) of the dynamic characteristic.
That is, it means a condition that the characteristic
root which exists on the left half plane will not move
to the right half plane, and vice versa, the charac-
teristic root which exists on the right half plane will
not move to the left half plane.

In this paper, we also consider the gain charac-
teristics band which depends on the amplitude and
the movement of the band which corresponds to a
traditional describing function. When feedback con-
trol for such systems is taken place, it is necessary
to examine the stability problem of the closed loop
system. we consider the first feedback subsystem as
shown in Fig. 3.

The robustness condition which corresponds to Eq.
(8) is represented as

|G (ak, 8)Cr(s)(1+Gr(ar, )Ci(s)) "] < 1/|Dk(al(msgl,
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where Gy (ak, s) and |Dyp(ag, s)| are defined by the
same form as Eq. (8) and (10) (or Eq. (13) and
(14)), respectively.

We consider a control system which is unstable
regardless of the existence of the uncertainty when
the amplitude parameter aj is small, and becomes
stable (robust stable) regardless of the existence of
the uncertainty when the amplitude parameter a; is
large. This case always occurs in an actual control
system due to the saturation of each element. For
time response in this case, the sustained oscillation
(periodic or pseudo-periodic oscillation) with a lim-
ited amplitude is estimated, independent of whether
it clearly becomes a limit cycle.

5 Numerical Examples

The Bode diagram of the band of gain characteristics
(frequency response bands) of control systems whose
uncertainty is given in the form of multiplicative per-
turbation is shown.

[Example 1] Consider a cascade connection
G*(s) = G}(s)G%(s). The calculation result of the
cascade connection of the frequency response bands
G} and G is shown in Fig. 5, where we assume
that G} and G% contain saturation characteristics
and first order lag uncertainties. Their ‘modified’ or
estimated nominal transfer functions are as follows:

3 10(1 + 0.01s)
Gils) = (4 + 25+ s2)(1 + 0.025)’



As for frequency response of the nominal system,
the frequency transfer function is usually estimated
from the amplitude ratio, that is, gain characteristic
curves of those experimental data. However, for the
minimum phase system, it is known that the phase
characteristic can be provided from the gain charac-
teristic.

Frequency response of a subsystem in which such
control elements are cascade connected is given by
the following recurrent inequalityl!l:

D)l < 11+ (w)|-[De-1(Gw)|+|Ak(Gw)l, (3)
Do(jw) = 0,

where Dy is the uncertain term composited to the
k-th term. When the upper bound of the absolute
value of frequency response |Ag(jw)| and [1+A (jw)]
can be determined experimentally, this recurrent in-
equality is applicable.

When only the upper bound |Ax(jw)| is known in
Eq. (2), the following inequality can be applied:

1De(iw)l < (1 + pe(w)) - [De—a(fw)] + pr(w).  (4)
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Fig. 2 s-plane contour I'.

3 Robust Stability

When the cascade-connected system with the fre-
quency response band is feedback connected, it is
necessary to examine the problem of the robust sta-
bility. For the subsystem S; of a multi-loop control
system as shown in Fig. 3, the robust stability con-
dition is given by

1A1(s)G1(s)C1(s)(1 + G1(s)C1(8)) " lo < 1. (5)

The condition Eq. (5) for Hy, norm is equivalently
rewritten as follows:

IG1(s)C1(s)(1 + G1(s)Ci(s)) ™M < 1/p1(s),

as to

(6)

[A1(s)] € p1(s), se€T.

Here, we consider the variable s on the closed curve
I’ which encircles the left (or right) half plane includ-
ing imaginary axis of the complex plane as shown in
Fig. 2. By considering so, we can treat the relation
between the frequency transfer characteristics of the
nominal system G(s) and the upper bound of an
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uncertain part A;(s) provided from the experimen-
tal data on the s-plane.

.......................................................................
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Fig. 3 Multi-loop control system-1.

For the case where nominal feedback subsystem is
stable, that is, the closed loop transfer function of the
subsystem S; has no pole in the right half s-plane,
we can see that the subsystem is stable regardless
of the existence of the uncertainty when Eq. (6) is
satisfied. '

On the other hand, for the case where nominal
feedback subsystem is unstable, that is, the closed
loop transfer function of the subsystem S; has some
poles in the right half s-plane, we can see that the
subsystem is unstable regardless of the existence of
the uncertainty when Eq. (6) is satified.

Therefore, we can generally refer to the robust sta-
bility condition Eq. (6) as the condition of invariance
(robustness condition) of the dynamic characteristic.

For the overall multi-loop control system shown in
Fig. 3, the robust stability condition is represented
as a series of inequalities byl?

Dk ()G (s)Cr(8)(1 + Gi(8)Ci()) oo < 1, (T)

Here,
Gr(5) = Gror (8)(1 + Ghms (8)Cher ()2 Gi(s), (8)
Go(s) =1, Co(s) =0.

The criteria Eq. (7) based on H,, norm is rewritten
as the robustness condition as follows:

|Gk (5)Ci (s)(1 + Gr(s)Cr(s)) ™| < 1/|D(s)], s €T
(9)
where the upper bound of the absolute value of com-

plex frequency transfer characteristic Di(s) is given
by

1Dk (s)} < (1 + pi(s) - [Di-1(s)] + pr(s),

from Eq. (4).

For the case where the k-th nominal feedback sub-
system is stable, we can see that the k-th feedback
control system is stable regardless of the existence of

(10)
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Fig. 5 Cascade connection.

[Example 2] Consider feedback control systems in
which the plant is written as

1

RS PEy)

Fig. 6 shows the frequency response band of a control
system when feedback K = 2.3 takes place, as well

o1

.

d loop fxequency
£ response ban

'Fig. 6 Feedback connection.
Fig. 7 is the case where a feedback compensator

1+s

is used. As is obvious from the figure, the robust
sta.blhty is 1rnproved

Fig. 7 IC(')r‘npensated system,

Fig. 8 is the case where the nominal system is un-
stable. In this case, the invariant condition of the
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dynamic characteristic, that is, the robustness (‘ro-
bust instability’) condition holds. When the gain K
decreases depending on an increase of the amplitude
parameter a; and increases depending on a decrease
of the amplitude parameter, the sustamed oscilla-
tion, for instance, a li

Figl. 8 Unstable s:ys'tenll.

6 Conclusions

In this paper, we have described the composition
method of the frequency response band by experi-
mental data of frequency responses of the controlled
systems with uncertainty and nonlinearity, and the
evaluation method of the robust stability condition
or the invariant condition of the dynamic character-
istic of multi-loop control systems. The concept is
applicable to a realistic case in which the frequency
response band depends on the amplitude of input.
The shifting of the frequency response band corre-
sponds to the generalization of a traditional describ-
ing function method. With the application of such a
concept, it will be possible to elucidate the existence
of the periodic oscillation of a general multi-loop con-
trol system.
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