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Abstract This paper presents a new formulation of the kinematics of closed—chain mechanisms and
its applications to obtaining the kinematic solutions and analyzing the singularities. Closed-chain
mechanisms under consideration may have the redundancy in the number of joints. A closed—-chain
mechanism can be treated as the parallel connection of two open—chains with respect to a point of
interest. The kinematics of a closed-chain mechanism is then obtained by imposing the kinematic
constraints of the closed—-chain on the kinematics of the two open-chains. First, we formulate the
kinematics of a closed-chain mechanism using the kinematic constraint between the controllable
active joints and the rest of joints, instead of the kinematic constraint between the two open-chains.
The kinematic formulation presented in this paper is valid for closed-chain mechanisms with and
without the redundancy. Next, based on the derived kinematics of a closed-chain mechanism, we
provide the kinematic solutions which are more physically meaningful and less sensitive to

numerical instability, and also suggest an effective way to analyze the singularities.

Finally, the

computational cost associated with the kinematic formulation is analyzed.
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1. INTRODUCTION

Closed-chain mechanisms have drawn attention from
research society due to their advantage in rigidity and
accuracy over open-chain mechanisms [8]. One
example of closed-chain mechanisms can be found in
the finger structure of UCSB hand, which is a five
bar closed linkage [5]. Another example is a dual arm
system which is a closed-chain formed by two
open—chain or serial manipulator [6]. While
open-chain mecahnisms consist of active joints (joints
with actuators) only, closed-chain mechanisms may
contain passive joints (joints without actuators), as
well. The existence of passive joints makes it
possible to be built to be lightweight [1], and
furthermore, helps increasing motion flexibility at the
cost of load capacity.

To improve the kinematic performance, one may
introduce the redundancy in the number of active
joints to a closed-chain mechanism. Such redundancy
can be introduced either by putting additional active
joints (Type I redundancy) or by replacing the passive
joints with active ones (Type II redundancy). It is
shown that Type 1 redundancy increases motion
flexibility at the expense of load capacity, and Type 1I
redundancy increases load capacity at the expense of
motion flexibility [7]. Type I and Il redundancies and
their combination may be useful to design closed-chain
mechanisms for applications demanding high
performance. It should be noted that Type 1
redundancy does not increase the number of active
joints which can he controlled independently, although
it provides us with the multiple choices in selecting
the set of controllable active joints.

A closed-chain mechanism is allowed to have

limited numbers of active and passive joints to
maintain mobility and controllability in task execution.
Let n, be the number of controllable active joints and

n, be the number of uncontrollable active and passive

joints. For an m doJf. closed-chain mechanism
(m=3 for a planar mechanism and m=6 for a spatial
mechanism), the mobility condition states that the
number of whole joints, n,+n, should be greater than
or equal to 2m, that is, n,+n,22m; the controllability
condition states that the number of uncontrollable
joints, =, should be equal to m, that is, n,=m. In
the case of a 6 dof dual-arm systern, which is an
extreme of closed-chain mechanisms having twelve
active joints with no passive one, only six active joints
are controllable, such that #n,=n,=86, satifying both
mobility and controllability conditions.

It is convenient to treat a closed-chain mechanism
as the parallel connection of two open-chains, each of
which may contain passive and/or active joints, with
respect to a point of interest. There may be two
different approaches to formulating the kinematics of a
closed-chain mechanism from the kinematics of the
two open-chains. The first approach is based on the
kinematic constraint existing between the two
open-chains interacting each other [2]. The second
approach, to be dealt with in this paper, is based on
the Kkinematic constraint existing between the
controllable active joints and the rest of joints.

The Kinematic analysis of closed—-chain mechanisms
with redundancies mentioned above is essential for
the design and implementation of advanced
closed—chain mechanisms. It is a major task to
develop the kinematic solitions, which is physically
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meaningful, numerically stable, as well as
computationally efficient. One such effort would be to
reduce the number of matrix inversions involved in the
kinematic solutions. Next, it is also important to
provide an effective way to detect the singularities, at
which a closed-chain mechanism cannot resist certain
external forces or maintain its structure. The
singularities of a closed-chain mechanism may cause
serious problems during operation, for instance, the
damage of a closed-chain mechanism and an object
under manipulation.

This paper presents a new formulation of the
kinematics of a closed-chain mechanism possibly the
redundancy in the number of joints, and demonstrates
its power for the kinematic analysis. This paper is
organized as follows: In Section 2, we formulate the
kinematics of a closed—chain mecahnism based on the
kinematic constraint between the two open-chains.
Problems related to the derived kinematics in the
kinematic analysis is discussed. In Section 3, we
reformulate the kinematics based on the kinematic
constraint between the controllable active joints and
the rest of joints The derived kinematics is shown to
be effective in obtaining the kinematic solutions and
analyzing the singularities. In Section 4, we analyze
and compare the computational cost associated with
the kinematic formulations in Section 2 and 3. Finally,
conclusions are made in Section 5.

In this paper, a closed-chain mechanism is assumed
to satisfy both mobility and controllablity conditions.
The controllable active joints are referred to as active
joints and the rest of joints are referred to as passive
joints.

2. PROBLEM STATEMENT

This section formulates the kinematics of a
closed-chain mecahnism based on the kinematic
constraint between the two open-chains, and describes
problems related to the derived kinematics in terms of
physical meaning, computatinal requirement, and
singularity analysis. In what follows, the two
open—chains are denoted by limb 1 and limb 2.

let 8, and 8,, i=1,2, be the active and the
passive joints of limb f. The Cartesian velocity at a
task point, 7P, of limb 7, x;, is given by
Ja 0, + Yo bip, i=1,2 1)

Y, 1=1,2, a=a,p. represents the Jacobian of

x;

where

limb ? corresponding to @, With

t t

8, = [ 6. .01'// 14 =12 ()
Ji=1 Ju Jp 1, i=12 (3)
(1) can be written as

x = J; 6, i=1.2 (4)
The Cartesian velocity at TP of a closed—chain

mechanism, x, can be expressed as
X, = X, = X, 6))
(5) represents the kinematic constraint existing
between two limbs, indicating that two limbs are

constrained by ecach other in generating motions at TP.
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For a given x,, from (1) and (5),

0, Q: x,, =12 (6)
where
Q: = 1. ¥ 1N =12 )
which is the minimum norm solution of 8, From
(6),
?la Qla ] x’a (8)
02‘, Q?A)
where Q.. {=1,2, represents the submatrix of Q;
corresponding to 8 ,,. With
0. = [ 8. 8. 1 ©
Q. = [ Q. Qu 1° (10)
(8) can be written as
oa - Qa x-o (11)
(11)  represents the inverse kinematics of a

closed-chain mechanism, relating the Cartesian velocity
X, to the active joint velocity @, From (11),

( Q' Q.)' Q. e,

(12) represents the forward kinematics

closed-chain mechanism, relating #, o

(12)
of a

X,

X,
Let r, be the joint torque corresponding to '0,,‘

And, let f, be the Cartesian force at TP of a

closed-chain mechanism. Using the priciple of virtual
work, from (11),
f, Q' =« (13)
(13) can be used for the singularity analysis of a
closed-chain mechanism.
Related to the kinematic formulation of a
closed-chain mecahnism, given above, the following
discussions can be made:

1) The inverse kinematic solution

0, given by
0, and

8, which are obtained subject to min | &, |
and min || 8, Ii%, respectively. Refer to (6). Note

that Il 8; 1> =1l 8, I* + |l 8, W2 i=1,2

It seems physically meaningless to minimize the norm
of the mixture of active and passive ones.
2) Seen from (11) and (12), the Kkinematic

formulation requires the computation of Q. consisting
Q, and Q, which involve the
inversion of J; and J,. Refer to (7). The two

matrix inversion involved in the kinematic formulation
may be adverse to numerical stability as well as
computational efficiency.

3) Based on (13), a closed-chain mechanism is said

T,

(11), consists of subvectors of two solutions

of submatrices of

to be singular if there exists a nonzero solution
satisfying

S

Q.
singularity
within

0
(14 tells that the
mechanism  occurs
specified by the nullspace of

(14)
of a closed-chain
the joint torgue space,

Q.. The singularity
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of a closed-chain mechanism can be detected by
checking the dimension of Q.’, which is not readily
obtained, as mentioned in 2).

3. NEW KINEMATIC FORMULATION

This section develops a new formulation of the
kinematics of a closed-chain mecahnism based on the
kinematic constraint between the active joints and the
passive joints. The derived kinematics is examined
to show its effectiveness in the kinematic analysis,
compared to the kinematics obtained in Section 2.

The passive joint velocity of limb i, @8,, i=1,2,
is uniquely determined according to the active joint

velocities of limb 1 and limb 2, 8, and 8,
.0,', = G,] '01,, + GQ bZa- t=l.2 (15)
where
Gy = 292 12 (16)
14 a 0ja ’ * i :
With
0; = | 0191 bzol I an
G = G, Gy (18)
Gy G2z
(15) can be written as
6, = G 8, (19)
(19 represents the Kkinematic constraint existing

between the active and the passive joints.
Plugging (15) into (1),

e = [ Ju+ Jy Gu Jy Gy | [ D1 ] (20)

82
= Ju Ga Ju + Jo Gz ] [ zl“ ]
With
Jo = | % J: ] (21)
where
Jhb = Jaut J, Gy = Jo» G
. = Y, G2 = Jaw + Jz Gz
(22)
(20) can be written as
x, = 1, 8, (23)
and thus
6, = ). CJ, 3.7 x, (24)

(23) and (24) represent the forward and the inverse
kinematics of a closed-chain mechanism. Note that
the inverse kinematic solution, given by (24), is the
minimum norm solution of 8,.

Referring to (16) and (18), the compuation of G
i=1,2, as a
function of @, and 8., which is difficult to obtain

seemns (o require the expression of 8 ,,

in general. However, it is possible to compute G

without the expression of 8,, i=1,2, as follows:
Rearranging (20),

J. 6, = J, G 8, (25)

with
J. = [ Jio —Jz ] . a=a,p (26)
Since (25) holds for any @,
Jo. = J, G (27)
and thus
G = J, I (28)

(28 tells that G can be computed from J, and J,,
both of which are readily available. Note that J, is

always invertible.
For the singularity analysis, using (18), (25) can be
rewritten as
J. ba = J ? 09 (29)
Related to the kinematic formulation of a closed chain

mechanism, given above, the following discussions can
be made:

1) The inverse kinematic solution @&, given by
(24), is obtained subject to min || 8, }I>. Note that

| 8, W= 1 8, 11> + Il 6, II> It would be

physically meaningful to minimize the norm of the
whole active joints, instead of the norm of the mixture
of active and passive joints, as in Section 2.

2) Seen from (23) and (24), the kinematic
formulation requires the computation of J, or G,

which involves the inversion of J,. Refer to (28).
The derived kinematics requires single matrix
inversion only, and is less subject to numerical
instability, than the one in Section 2.

3) Based on (29), a closed-chain mechanism is said
to be singular if there exists a nonzero solution b,

satisfying

0 = 1, 8, (30
(30) tells that the singularity of a closed-chain
mechanism occurs within the joint velocity space,
specified by the nullspace of J,. Since J, is
readily available, it can be a more efficient means for
detecting the singularity, than Q,', introduced in
Section 2. It should be noted that there is no
relationship between the singularity of a closed-chain
mecahnism and the singularity of its individual limbs.

4. COMPUTATIONAL COST ANALYSIS

This section  analyzes and compares the
computational cost associated with two kinematic
formulations of a closed-chain mechanism, presented in
Section 2 and 3. Both nonredundant and redundant
closed-chain mechanisms are considered.

Without loss of generality, let us consider two 6
dof. closed-chain mechanisms (m=6), including the
one in which each limb has three controllable active
joints and three uncontrollable active and passive
joints, denoted by NCM, and the one in which each
limb has four controllable active jonts and three
uncontrollable active and passive joints, denoted by
RCM. For NCM, which may have Type 1I
redundancy, we have n,=n,=6, such that
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TABLE 1. The computational cost required to
compute Q, and J, for NCM and RCM.

Q. Jo
NCM 2 C46) CA6) + C,(6x6%6)
+ 2 C,(6%x3%3)
RCM| 2 CA6) + 2 C(6x7x86)| CL6) + C,(6x6x8)
2 C,.(7x6x86) + 2 C.(6x3x4)

And, for RCM, which has
Type I redundancy, we have n,=8 and n,=6, such
that #n,+n,>2m and Both closed-chain

mechanisms satisfy the mobility and controllability
conditions.

The computational cost associated the two
kinematics, derived in Section 2 and 3, depends on the

amount of computation required to compute Q, and
Jo. Refer to (11) & (12) and (23) & (24).
analyze the computational cost for Q, and J,, for the

comparison of the two kinematic formulations. The
matrices and their dimension involved in computing

Q. and J, are listed in the following:
For NCM, where J. R(M, i=1,2, e=a,bp,

nytn,=2m and n,=m.

n,=m.

Here, we

J,e R, (= ), ')er™, i=12
Q. R™, i=1,2, Q. e R”®

and
J.e R™ a=ap G(= 3,7 J.)e R

G; e R, i=1,2, j=1,2
J5(C=136Gzn), (=173, Gy)e R
Joe R*”

For RCM, where J., € R

6x4 6x3 .
s Jip € R ’ z=l,2,

J,e R
Ql= 3" 73, 1)1 1eRrR™, i=12
Q.= R, =12, Q, e R*®
and
J, e Raxs' I, e RS g e R™?®
G, e R*™, i=12, i=12

Ji. Joe R™; J, e R™®

For the notational convenience, let us define

Cullxmxn) = the cost for multiplying an Ixm
matrix and an mx<»n matrx
Cdn) = the cost for inverting an 72X 2 matrix

TABLE 1 summarizes the computational cost required
to compute Q, and J, for NCM and RCM. From
TABLE 1, we observe that 1) the Kkinematic
formulation in Section 3 is computationally more
efficient than that in Section 2, for RCM, 2) the
opposite is true for NCM. However, it should be
noted that the kinematic solutions derived in Section 3
is more physically meaningful and less sensitive to
numerical instability, compared to those derived in
Section 2.
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5. CONCLUSIONS

we presented a new kinematic
formulation of a closed—chain mechanism and
demonstrated its effectiveness in  the kinematic
analysis. The kinematic formulation presented in this
paper is valid for closed-chain mechanisms with and
without the redundancy in the number of joints. The
kinematics of a closed—chain mechanism was
formulated based on the kinematic constraint existing
between the controllable active joints and the rest of
joints, instead of the kinematic constraint existing
between the two open-chains. The derived kinematics
of a closed-chain mechanism was shown to be
effective in the development of the kinematic solutions
and the analysis of the singularities. The analysis of
the computational cost associated with the kinematic
formulation was made.

In this paper,
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