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Abstract:

A finite-dimensional approximation technique is developed for a class of spectral systems

with input and output operators which are unbounded. A corresponding bounding technique on the
frequency-response error is also established for control system design. Our goal is to construct an
uncertainty model including a nominal plant and its error bounds so that the results from robust linear
control theory can be applied to guarantee a closed loop control performance. We demonstrate by
numerical example that these techniques are applicable, with a modest computational burden, to a
wide class of distributed parameter system plants.
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I. INTRODUCTION

A distributed parameter system described by a partial dif-
ferential equation has been extensively used for modeling
many types of physical plants. They are generally so-called
infinite-dimensional, and some sort of finite dimensional ap-
proximations are necessary in most control system design.
With recent developed robust linear control theory, we may
guarantee stability and performance of the closed loop sys-
tem if appropriate modeling error bounds are available. In
model based control, a higher order model will generally re-
sults in higher order compensators, so the problem is how a
lower order model with sufficient accuracy can be obtained.

It is well-known that conventional simulation techniques
for distributed parameter systems are roughly classified into
the finite difference method and the methods of weighted
residuals. The latter include orthogonal polynomial expan-
sions, eigenfunction expansion and Finite Element Methods,
and usually they are said to generate a lower order model
than by the finite difference method. But in most cases,
orders of the model by the method of weighted residuals
are even too high for control system design. A common ap-
proach to cope with this problem is to exploit lower order
approximation techniques such as the balanced truncation
method and Hankel norm approximation method. But then,
such a mode] reduction will corrupt correspondence between
states or parameters to ones for real physical plant. This
causes difficulties in problems such as adjusting controller
parameters and fault diagnosis in operations.

In this paper we propose an approach to finite dimen-
sional approximation problems for a class of spectral sys-
tems. This is based on the modal truncation while a direct
term is considered with which the static characteristic of the
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model coincide to that of the original system. The corre-
sponding error bounds in frequency domain are also given in
this paper. By static characteristics we mean dc component
of the input-output response for stable systems. The static
error has effects in all frequency range, and in many cases
the number of terms has to be increased to obtain a suffi-
cient static characteristics, and this seems to be one of the
main reasons why approximation models are frequently to
be of high orders. Static characteristics ¢an be represented
without any dynamic elements (integrator), so compensat-
ing the static error has been considered and several methods
has been proposed so far in the model reduction problem for
lumped parameter system(3).

The novelty of this paper is twofold. The one is that the
main results are readily computable formulas, consisting of
an inverse of the system operators and of a finite number
of eigenvalues and eigenfunctions. This direction is partly
inspired by Erickson, Smith and Laub [4]. The other one is
that the results can be applied to systems with input and
output operators which are unbounded, and we hope this
enhances much utility of the results.

I1. SYSTEM FORMULATION

Physical plants containing heat conduction, diffusion,
strings, beam can be modeled as spectral systems described
by countable number of modes. We first assume that a sys-
tem contains a spectral operator which satisfies

Assumption 1. (simple spectral operator [5}])
Let A be a closed operator with domain D(A) dense in
a separable Hilbert space Z with compact resolvent, and

its eigenvalues {A;, i = 1,2,...} are simple and their real



part be bounded above. Further, the normalized eigen-
functions {¢;, i =1,...} for A can be selected to form a
basis of Z, and the eigenfunctions {¢i, i = 1,...} of the
conjugate A* of A be normalized with respect to the inner
product of Z so that (¢;, ;) = §;; (Kronecker delta).

It is known that A generate a strongly continuous semigroup
{e"*} on Z if Assumption 1 is verified. We then consider a
system as in the following

Formulation.
output map [8])
For A satisfying the Assumption 1, we consider Hilbert
spaces V, W such that D(A) C W C Z CV C D(A")
where D(A*) 1s o dual space of D(A*) with the graph
norm of A™, and Z' is identified with Z. Let B: R = V,
C: W — R and let an equation

(system with bounded input-

% =Az+Bu onV, z(0)=z €W, (1.a)
and observation
y=Cz. (1.b)

We assume that these define an bounded input-output
map L*(0,T;R) — L*(0,T; R) : u(t) — y(2).

The relations W C Z C V are with dense embeddings,
and a closed operator 4 on V and its restrictions to W and
Z generate a strongly continuous semigroup, respectively
on each space. Let the state be 2(t) = )_>" | 2.(t)¢n where
Zn(t) = (z(t),¢),, n = 1,2,... are called as modes. The
equations are rewritten as

Zn(t) = Anza(t) + bnu(t), n=1,2,...

o0

() =Y cnza(t),

n=1

(2)

and the transfer function G(s) from u to y can be written
as (4]

ot Cnbn
=y = 3
G(s) Z_j P (3)
where ¢, := C¢n, b := B"¢, and tan, = —X, for n =
1,2,.... B and C can be represented by sequences{b, }7%,

and {c» }5%;, respectively.
In this paper, we consider exclusively a system satisfying
the following

Assumption 2. (stable self-adjoint systems)
i) A 1s a self-adjoint, 1.c., D(A) = D(A") and A = A™.
11) A is negatwe-definite.
uy) W= D((=A)), V= D((-A)"1) where 0 < ax <
1.

Distributed parameter systems of parabolic type such as
thermal conductivity and diffusion systems are reduced to
this kind of ones.

Since A is self-adjoint and negative-definite, its eigenvalue
is all negative real number, and we assume consequently
0< 7 <7 <. Note that Z = D((—.A)°).
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V and W are characterized as follows:

> wgn) ) < oo}

n=1

Z{Trlt_n ¥, ¢n:>z}2 < 00}

n=1

W:{d)eZ

(4)

V’:{wez

For example, for one-dimensional parabolic distributed pa-
rameter system, a = 0 corresponds to the case with Dirich-
let boundary input and bounded measurement operators,
and a = 1/2 with Neumann boundary input and point ob-
servation.

We note that finite numbers of {7}, {¢.}, {b=}, {cn},
{,-) and A™" are readily computable even in more general
setting by using, e.g., finite element method.

III. MODAL APPROXIMATION

We mean by the NV-th modal approximation model of G(s),
the N-th partial sum

T eab
Gi(s) =) (5)
n=1

of infinite series (3). The modal approximation can be rep-
resented by state space form

N(s) =Cn(sIy — AN)"'Bw (6)

where Ay = diag(—7,...,~7~), Bn = [I1
Cn=lc - cn).
We now give an error bound for the modal approximation

of spectral systems.

- by,

Theorem 1.

(7)
An upper bound for the error between the modal approzi-
mation (5) and the system (1) is given as

(error bound for truncated model

1G -Gl <d (7)
where

d= (A ell2 — |45 CRIE) Y (lA-blE - 145" Bn13) ?
©)

which is shown in Table 1 for the case a = 0,1/2,1.

Sketch of Proof: It is easily shown that

o
IG = Gxllx < D 7 lenllbn]
n=N+41
pY Py
o 2 oo 2
S[ Z 7.3(u—1)|cn|2} I: Z T,]_xlllb,1|z‘|
n=N+1 n=N+1

The Theorem can be proved by seeing

S [ten]t = (AT (A7) = (=)l

lell3, a=0

1

=4 {(c,—Ac), a= 2
A ell}, a=1.



Table 1 Error bounds for modal approximation.

« 1 w d

0 z DA™ (oli2—(Bw12) " (1A~ clid-1Ax' CE) "
1/2 | D=4~ | D=4 | ((6,=A76) =BE(— )5 Bn)? ({c,—A"c) ~Cn (—4)5'CF)
1 DA™Y z (1A= I35 By 13) " (lcli3—1cw3)

Note that in case of modal approximation for a system of
parabolic type, we may not have generally any error bounds
which correspond to strictly proper frequency weights; we
can not say that there exist d > 0, 7 > 0 such that

G () — GGw)| < [d/ (1 + 7 jw)l, Vo,

Therefore, the multiplicative error is hard to evaluate above
by using some proper function. One choice of upper bound
for the multiplicative error may be

W2 (jw)| = d - |G (jw)| ™. (9)

As we have seen before, additive error for the truncation
model is relatively large in low frequency range, so higher
order model is used to obtain a model with higher precision
in low frequency. If we truncate the series in low order,
some limitation would be imposed in control performance
for large error in low frequency range. Usually we can apply
some other model reduction techniques to the high order
truncation model, but the model reduction will corrupt the
correspondence of physical meanings of states or parameters
and some inconvenience may occur in practical application.

IV. StaTic COMPENSATION

In this chapter we consider a compensation of the dc gain
difference between the model and the system using direct
term.

Suppose that a system satisfy Assumptions 1 and 2, we
mean by a statically compensated model
Gn(s) = Dy +Cn(sIn — An)"'Bn
=G (s) + (G(0) - Gy (0))
where Dy = G(0) — G%(0).

(10)

This type of models has been used for a distributed param-
eter system with boundary inputs. The statically compen-
sated model can be also expressed as

N

Enbn —  Cubn
G}v(S):Z;_-'T—nJr- z ——7‘_—— (11)

n=1 n=N+1

A corresponding error bound is given as

Theorem 2.
model)
An upper bound for the error between the statically com-
pensated model (10) and the system (1) is given as

(error bound for the compensated

-1 .
T4y " JW

Gljw) —Gr(jw)| <d-
GGw) = Gt < d- |

(12)
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for allw € R where d is given in (8) and Table 1.

Sketch of Proof:  Using
= cnbn —8/Tn
Gls) = Gnls) = 3 m
=N 41 n T
we have
IG(jw) — Gn (jw)l
< =11 (16 Jw/7n
= Z 7o ln][bn| 14 jw/mn
n=N+1
< 77 e [bn ——————jw,/TN+l
< =§Nj+ leallbn |

and the rest is similar to the proof of Theorem 1.

V. EXAMPLES

For clarity of exposition we consider the following one-
dimensional constant parameter parabolic distributed pa-
rameter system.

9z(t,z) _ 8*z(t, 1)

+b(z)u(t), z € (0,1), t >0 (13.a)

ot Ox?
z(t,0) = z(t,1) =0 (13.b)
1
y(t) = / c(z)z(z)dx (13.¢)
0
1 2
2z 2
bay={ " 35753 (13.d)
0, otherwise
1, 0<z<~
c(z) = 1 4 (13.e)
0, —<z<1
The eigenvalues and eigenfunctions are A, = —1/(nx)?,

éu(z) = V2sinnrz and (¢n,b) = (V2/nx)(cosnm/3 —
cos nw2/3), (¢, ¢n) = (V2/nn)(1 - cosnm/4). Furthermore,
since

(=A7'b)(z)
1 1
'gl', << —
1 1\? 1 2
= JE— —_—— —_— _<.-<__.
12(T 2) to :3-‘*3
~6—'(1".’L'), E<IS1
(-A™ ) (z)
1 7\% 49 1
LI (T 0<z< —
{2 (' 32) t o 1~T—4
—(1—x), — <<
32( r), 1 <x <1



(b,—A7'b) = 5/6° — 2/6* = 2.16 x 1072, {¢,~A"c) =
(1/128)(17/12) = 1.11 x 1072

In this example, the transfer function of the system (13)
is given as closed form as follows:

G(s) = cosh \/52/3 — cosh 1/5/3
) = = s v

- (coshy/3/4 — 1) (14)

while in general case such as multi-dimensional system with
complex boundary conditions or containing spatially vary-
ing parameters, we have to compute error bounds from The-
orem 1 and 2 and utilize it in design procedure.

The Bode plots of G(jw), G¥ (jw) and G~ (jw) are shown
in Fig. 1, and the magnitude for additive errors |A% (jw)| =
IGlw) = Gx (Jw)l, |Aan (jw)] =G (jw) — Gn (jw)], for mul-
tiplicative error |A% (jw)/G¥ (jw)|, AN (Jw)/Gn (jw)| and
their upper bound derived from (7),(12) are plotted in Fig.
2.

The statically compensated model has larger additive er-
ror in high frequency than for the truncated one, but we can
see that the multiplicative error for the compensated model
is better than the other in almost all frequency range.

We check achievable nominal performance of the closed
loop. Let take the approximation model as a nominal plant,
and formulate the design problem as a mixed sensitivity
problem [1]. For the upper bound of the admissible ad-
ditive perturbation, absolute value of (12) are used, and
performance objective can be represented by the weight
W1 (s), which bound the magnitude of the sensitivity func-
tion S(jw) = 1/(1 + Gy (jw)F(jw)) which represent the
effect from reference input to deviation. We take the weight

as
s/(10-a) + 1/b.

sfla+1
This will bound the sensitivity by b in a frequency range
from 0 to a, and by 10 in range above a/b. We assume to
give a specification that observation output tracks the ref-
erence with the error less than 1%, so we take b = 1/100.
Then how we can make the band a large without destabi-
lizing the closed loop is determined by how wide range the
model expresses the system precicely taking into account
the approximation error. This can be obtained numerically
as the upper limit of ¢ with which the mixed sensitivity
problem is solvable as in table 2.

1 4% (S) = (15)

Table 2 Supremum of ¢ for which the mixed
sensitivity problem is solvable.

N Qsup

1 | 5.04 x 1077

2 | 7.85 x 1072

3 | 1.05%x107!

4 | 1.29x107!
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