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Abstract

The stability of system is one of the important aspects and to judge the
system’s stability is another complicated problem.

Previously, new technique derived

from relaxing Lyapunov conditions has been already introduced and in this paper, this

proposed technique applies to the practical dynamic systems.

procedures prove the comparable

This utility of numerical

improvements of the estimation of robustness for

dynamic systems having structured (bounded) perturbations.

Keyvords

1. INTRODUCTION

The stability concept based on Lyapunov
direct method is mainly used in this paper
and this proposed method warrants that
estimates of robustness will be extended and
improved. This new approach is derived from
modified consideration of the sign properties
of the time derivative of Lyapunov function
along finite time interval instead of the
conventional method of the sign property of
the time derivative itself. Systems which
have disturbances from their surroundings, it
is so difficult to obtain the analytical
solutions. But from the practical point of
view, it is very important to obtain the
allowable perturbation bounds so that the
stability of the original system may be
maintained. The control of dynamic systems
which contain uncertain elements and are with
uncertain inputs is treated by the
application of stochastic control theory.
The construction of measured state feedback
controls that provide a guarantee that system
responses enter and remain within a
particular nighborhood of the 2zero state
after a finite interval of times was
considered by Leitmann [9], as well as
controller design for uncertain systems. The
main objective of the current investigation
is to analyze the results from the
perspective of computational programming.
This main purpose of this paper starts with
the new Lyapunov based technique for the
robust design of control systems subject to
structured perturbations. In concluding
remarks, results from computational program
can show the further researches directions as
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vell as the improvement of robustness bounds
in nonlinear system having structured
perturbations,

2. THEORETICAL BACKGROUNDS

The current investigation is to improve
the robustness estimate of dynamic systems
with structured uncertainties using Lyapunov
stability conditions to weaken the stability
condition formulated in conventional Lyapunov

theorens. For analyses of the sign
properties of the Lyapunov function
derivative integrated along the finite
interval of time are adapted, rather than the
sign properties of the derivative itself,
which has been the conventional method of
deciding the system’s stability. The system

investigated in this paper is selected as
form of nominally linear, with time variant,
nonlinear bounded perturbations. For system
analysis of the robust design of control
systems, stability must be considered in view
of the uncertainties of the system equations.
This is particular true of the current
investigation since stability is the
principal area of research interest.
Specific explanations are considered in next
section, in which vertical take-off and
landing aircraft system, with several
parameters varying over time, result in
substantial changes in dynamics. The system
equations require an adequate controller to
achieve satisfactory and stable performance
with different flight conditions. Parameters
with certain condition stated in the system
equations can be determined if the aircraft



conditions to be stable over a large
parametric space. The proposed technique
serve to improve the parametric range of the
structured perturbations considered to be the
robustness bounds.

Following corollary is utilized for
estimation of robustness bounds
system

the
Consider a

= fx), AO) = 0 (1)

where fe CY(R"™.
Let all solution of this equation be difined
in the future. If there exist:

1) a continuously differentiable
definite function V(x),

2) a bounded function T(x) defined for x=R"
and having a positive lower bound, and

3) a continuous, positive-definite function
W(x),

positive

such that the function

Vi(x) = V(x(z,0,2))dr (2)

- T(x)
fulfills the condition

-V ()= Wx) and V= W0) then the trivial
solution of (1) is globally asymptotically
stable. In this proposed technique, the
perturbations are considered as structured,
nonlinear time-variant, and systems are
nominally linear. This class of systems is
particularly suited to the utilization of the
corollary for the estimation of robustness
bounds.

The procedure based on corollary is then a
natural extension of the Lyapunov direct
method procedure. Firstly, the selection of
the Lyapunov candidate function V(x) is to

check the sign of V. Observe that for each
xel, there ane>0 such that

[} atz,0, a0,

investigation of (2) is required only for
xel. Given the class of systems under

discussion, it is enough to consider only the
points x inside the unit sphere S;. Secondly,
the approach utilizes the fact that the class
of systems under discussion allows for the
derivative of the analytical expression of
the difference

Wx(t,0,25)) — Wxyp). (3)

exists

Therefore, further

¥hen V(x) is selected as the quadratic form,
this leads to the analysis of the properties
of matrices, which are used to describe how
the difference in (3) behaves for different
perturbation. It will be possible to obtain
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the robustness bounds analytically and that
this approach will be a simple technique to
the multi-dimensional cases.

3. RESULTS FROM AIRCRAFT SYSTEM

Concerning the dynamic systems, we select
the linearized model of the VTOL(Vertical
Take-0ff and Landing) aircraft in the
vertical plane and describe:

x = (A +4A)x+ (B +4Bu.

The state vector xER", xi‘horizontal
velocity, xz! vertical velocity, «xs3:pitch
rate, x4 pitch angle. For typical load and
flight condition for this system at an

airspeed of 135 knots, the matrices A and B
are @

—0.0336 0.0271 0.0188 —0.4555
A= 0.0482 —1.01 0.0024 —4.0208
0.1001 0.3681 -0.707 1.42
0 0 1 0
and
0.4422 0.1761
B = 3.5446 —7.5922
—5.52 4.49
0.0 0.0

The most significant events take place in the
elements as:, as« and bz And all the other
elements are considered as constants. Thus,
in the matrices 4A(H and 4B3(f), these are the
only non-zero ternms. To obtain appropriate
hadling characteristics at the nominal
airspeed of 135 knots, the feedback gain, as
provided by Sundararajan [15], is

—0.8143 —1.2207 0.266 0.826

K= [ ~0.2582 1.178 0.0623 —0.212

Input u=Kx and, the system is three-degree of
freedom dynamic case with the structured
perturbations Jdayp day and dby. The system

equation is therefore

x = (A+4A)x +(B+4dRu, u = Kx
and

(A+BK)x + (4A+d4dBK)x
Ax+dANx .



Using the Lyapunov direct method, numerical
method is used for V=xTPx and

V=xT(ZTP+PZ)x to solve the equation

ATP+PA=-1 . Finally, the matrix P is
2.3651 0.1903 0.2075 —1.2156
P = 0.1903 0.3487 0.3661 0.0797
0.2075 0.3661 0.4609 0.1702
~-1.2156 0.0797 0.1702 2.1871

and

calculate the ATP+PA.
Therefore V=xT(71-TP+PZ)x is

V = (—0.3099 by —1.0)x?
+(—1.03254by; +0.4149da3)x;,2;
+(—0.85144by +0.7322da5 —1.0)x2
+(—0.4950)x,x;
+ ( _0.70834b2| +0.92184032)X2X3
+(0.1948 4by —1.0)22
+(0.18454b5; +0.41494a3,)x,x,
+ (0.38154b21 +0.73224034 +0.3404£1032)x2x4
+(0.64724b3 +0.9218dax)x4%,
+(0.13174by; +0.3404 42y, —1.0)x

If V is always negative, the matrix ATP+PA
is always negative-definite, the system is
asymptotically stable. To satisfy this
condition, the parametric spaces Jday Jday and

d4db; have certain limits. In the case of

| da3|<0.43, |dayl<0.24 are |4b,|<0.44 system

is stable in the sense of conventional
Lyapunov stability concept.

Applying the new technique, the space which

fulfills the stability conditions are
extended. Thus, the final results for
regions are, respectively,

| dag| €0.47 ,| dap!<0.26 and | 4by)<0.48.

4. CONCLUSIONS

The proposed technique is applied to VTOL
aircraft and the most important parameters
for the control and design of the airplane
controller were extended in range, assuming
the stability of the original system in the
context of Lyapunov stability. Robust
control design for VTOL aircraft was
previously considered by Singh and Coelho
[14], who obtained bounds resulting from
nonlinear controls of |dayl <0.2,|day| <0.3 and

| 4by| <0.3. The results obtained from the new
technique, based upon the study of robust
stability and ability to stabilize VTOL
aircraft systems with parametric

uncertainties were |day|<0.47 ,|dazl<0.26 and
| 4b5;1<0.48.  Further research of robustness

bounds should directed toward the study of
new generations of Lyapunov functions for
dynamic systems controlled by various kinds
of parameters and forms of perturbations.
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