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Abstract

In this paper, a control law based on the receding
horizon concept which robustly stabilizes time-varying
discrete linear systems, is proposed. A dynamic game
problem minimizing the worst case performance, is
adopted as an optimization problem which should be
resolved at every current time. The objective of the
proposed control law is to guarantee the closed loop
stability and the infinite horizon H* norm bound. It
is shown that the objective can be achieved by selecting
the proper terminal weighting matrices which satisfy
the inequality conditions proposed in this paper. An
example is included to illustrate the results.

I. Introduction

The receding horizon control, which is equivalent to
model predictive control, has received a lot of atten-
tions, because it presents many advantages over infinite
horizon control in some respects such as tracking prop-
erty, simple computation mechanism, and I/O con-
straints handling [1]-[6], and it has been widely used in
practical application to industrial systems. Especially,
it presents a proper control strategy for time-varying
systems. While we need the whole time-varying pa-
rameters throughout future time in an infinite horizon
control law, we need time-varying parameters only for
finite future time in a receding horizon control law.

Originally the receding horizon concept was estab-
lished in the early 1970’s and LQ performance index
was adopted as an optimization criteria [1]. But gen-
eralization and stability were firstly given in the late
1970’s by Kwon and Pearson who involved a fixed
terminal equality constraint z(t + T) = 0 on a finite
LQ optimization problem [2] [3]. Thereafter a lot
of articles have been published related to the reced-
ing horizon control with an LQ optimization critcria
[4}-6].

It is well known that the dynamic game problem
is naturally connected to H™> control problem. By
employing this problem, the robustness property in the
sense of disturbance attenuation and other robustness
properties of H™ control can be achieved. In the
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very recent years, there have been a few attempts to
adopt a dynamic game problem of minimizing worst
case performance even in the receding horizon control
strategy (14] [15]. In those articles, two methods were
proposed for time-varying continuous linear systems.
One is to obtain the receding horizon control law via
involving the terminal equality constraint z(t+7T) = 0,
and the other is to obtain the control law via selecting
the terminal weighting matrices which satisfy a matrix
differential inequality. However there has not been
such an attempt in the case of time-varying discrete
linear systems.

In this paper, we propose conditions under which
the receding horizon control law with game problem
guarantee the closed loop stability and the infinite
horizon H* norm bound for time-varying discrete lin-
ear systems. Especially, we propose a new method to
prove the closed loop stability in which the cost mono-
tonicity property is utilized. By using the method, we
can allow a lot of flexibilities in choosing controllers
if the objective is only to guarantee the closed loop
stability, and make it simple to show the closed loop
stability in the receding horizon control.

II. Preliminaries

In this section, we introduce brief preliminaries on
the dynamic games. The theory of dynamic game has
been developed by [7] and extended to a method of
H* norm minimization in [8] and {9]. The theory
is based on the idea that the disturbance tries to
maximize while the controller is trying to minimize
the performance index. In the sense that the control
signal acts against the worst possible disturbances,
there is a close link between the H™ minimization
and the dynamic game approaches [8]. Such a link
has been pointed out in a lot of literatures for both
the case of continuous-time linear systems [11]-[13}
and the case of discrete-time linear systems [8]-[10].
In this section, we introduce the finite horizon H™
optimization problem for discrete-time linear systems,
in which the dynamic game approach is utilized to
obtain a solution.



Now, we consider the following time-varying discrete
linear system throughout this paper :

Ak.‘l:k + BL’U,L + G;,.wk,

Ck Xy
U

where z;, € R" is the state, u, € R the control,
wy, € RY the disturbance, y € R' the output, and the
upper case letters denote matrices with appropriate
dimensions. Now, the aim is to find u; in L[0, N — 1]
such that

Tr+1 =

Zk

0]
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where ||7|] is the induced 2-norm from wy in [0, N~ 1]
to z; in §;[0, N — 1} and N is a positive integer. The
norm of z, in L[0, N — 1] is defined by

Il <,

N-1

121 = > =

k=0

Without the loss of generality, we assume that y = 1
throughout this paper. If this is not the case, we
replace G in (1) by Dy = v 'Gi.

Now we consider the following performance index
with a finite horizon [0, N — 1] :

N-1

Z(zi,zk — wiwy) + 2N Qney

k=0

N-1

Z(QJIL:CLCA::L'L. + Wy — wiwg) + 2n' QunaA3)

k=0

J

The problem is to find the sequences u; and wj such
that brings J to a saddle-point equilibrium, in other
words, minimize and maximize J. If we find such a
saddle-point equilibrium, (2) is guaranteed with the
control sequences ] {10]. The solution for this prob-
lem with the state feedback strategy is given in the
following theorem.

THEOREM 1 [10] The two-person zero sum dynamic
game described by (1) and (3) with closed loop per-
fect state information pattern has a unique saddle-point
solution if, and only if,

I - DiMy+1D, >0, kel0,N-1], 4)

where the sequence of nonnegative defirite matrices
M1, k€ [0, N — 1] is generated by

M,
A

CLCL: + A;_M‘.HA;]A‘, My = Qn (5)
I+ (Bk.Bl. - DL.DZ.)M;H. (6)

I

Then the saddle point solutions are given by

up = — By My A7 Az, and w] = DMy A7 Aga.
(7
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With the saddle point policies in (7), the saddle point
value for the performance index (3) is given by

J (.’l?()) = ;L‘(I)A/[().'L'(). (8)

Now, based on the preliminaries in this section, we
will derive main results in the following section.

III. Receding Horizon Control
We consider the following cost at the current time &
with the moving horizon [k, &k + N — 1] for the system
M

A+ N

J(u,w, k) = Z (z)z — wiw) + 24 8" QraNTha N,

1=k
®
where v € R* » and w € R™" are inputs and distur-
bances over the finite horizon [k, k + N — 1], respec-
tively.
We now consider the following dynamic game prob-
lem :
&(zy, k) :min max J(u,w,zrk,k). (10)
U w
We dencte that u'(uyg, k) € RV | w (2, k) € RV
are the saddle point solutions of (10), 2" (zx, k) € R" ¥
is the corresponding state trajectories, and J*(a;) is the
receding horizon saddle point value, where 1y is the
current state and & is the current time. And we denote
that (a4, k) and w;(uy. k) for j € [0, N — 1] are the
(5 + Dth vectors of u' (uy, k) and w* (a4, k), respectively.
If the saddle point solution of the problem (10) exists,
we can obtain from (7) that

ul (@, k) =

wl_y (1, k)

—BiMi A7 Ay,
DM A7 Az Vi€ [k b+ N = 1],

where M,,, is obtained from (5) with ¢ € [k, k +
N — 1] and M4y = Quyn. In this case, the saddle
point valuc J'(u4) at every current state is given by
2, Myay. The basic concept of the receding horizon
control is to calculate the optimal control u*(a;, k)
with the current state x, at every current time k, and
implement u; = w (x4, k) repeatedly. In this paper, we
are interested in the state feedback strategy. Hence
we just only calculate the state feedback optimal gain
at every current time. Note that if the system and
the terminal weighting matrix are, time-invariant, the
receding horizon feedback gain will be constant.

Now we assume the following in order to make the
problem fcasible.

Assumption § The dynamic game problem &(zy., k) ad-
mits the unigue state feedback saddle-point policies for
all k.

Under the following assumption, the saddle point
values ./ () at cvery current state will be positive,
because positive definiteness and invertability of the
matrices A, will be guaranteed [10].



Assumption 2 The pairs (A, C;), k € [0,00) are in-
Jjective, in other words rank(A, C.Y = n, k € [0,00),
and Q.+ is positive definite.

In the following two subsections, we will propose
conditions under which the closed loop stability is
guaranteed and the infinite horizon H> norm bound
is also guaranteed, respectively.

A. Closed Loop Stability

In this subsection we show that the receding horizon
control obtained via the dynamic game problem in the
previous section stabilizes the system (1) under the
certain conditions. In order to obtain the closed loop
stability the following assumptions are included.

Assumption 3 The terminal weighting matrix Q. satisfies
the following matrix difference inequality for some K, €
RII'XH N

Qi > ¥ + CLCr + KL K, (11)
where
U, = FQu Dl — DiQivi D) ' DiQun Fi
+F1:Qk+lﬂzv (12)
F., = Ac— B.K. (13)

Assumption 4 The system (1) is observable. In other
words, C;®(i,k)p =0, Vk < i <k + n implies p =10,
where ®(i,k) = [/, A

Now, the following theorem will show that if we
select the terminal weighting matrices such that they
satisfy the condition (11) and the problem ®(x, k) ad-
mits the saddle point policies, the closed loop stability
for the system (1) with the receding horizon control
is guaranteed.

THEOREM 2 ' Suppose that the assumption 1,2,3,4
are satisfied. Then the receding horizon control u, =
uy* (x4, k) stabilizes the system ().

In (3] and [14], the terminal state constraint
2(k + N) = 0 is involved in order to guarantee the
closed loop stability. In that case, the terminal con-
straint can be satisfied by setting the terminal weighting
matrix as Q4 n = co. However, the terminal equality
constraint makes the dynamic game problem infeasible
in the case of the discrete time systmes, because the
disturbance at the one step ahead terminal time, ic.
i = k+ N ~ 1 may be arbitrary. Moreover, Qc+ny = 00
does not satisfy the saddle point condition (4) in the
dynamic game problem. Hence we proposed an in-
equality condition of terminal weighting matrices. In
[15], there are similar conditions for continuous time

All the proofs in this paper are skipped for lack
of the space
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systems. However, there are some differences in the
procedure of the stability proof between [15] and this
paper. While the monotonicity of the Riccati equation
solution and the Lyapunov function are used to show
stability for the continuous-time linear systems in [14]
[15], the cost monotonicity property is used to show
the closed loop stability for the discrete-time linear
systems in this paper. Especially, in the condition
(11), there are some flexibilities, because K is free
parameter. We guess that the procedure in this paper
can be easily utilized to show stability for the case of
nonlinear discrete systems under some mild conditions
such as existence of dynamic game solutions at every
current time for nonlinear systems and positiveness of
saddle point values.

Now we proposc a practical way of obtaining the
terminal weighting matrices @ in the assumption 3
because it is somewhat difficult to obtain the matrices
which satisfy the inequality condition (11) directly.

LEMMA 1 If there exists positive definite Q,Vk €
[N,o0) which satisfies the following recursive equation
for some K, € R"""

Qi = [F(Qi — CLCy, — KK ) ™ FL + Dy D], (14)

where F, = A, — B.K,, then Qy satisfies the condition
(11).

Now, in the following subsection, we will propose a
condition under which the infinite horizon > norm
bound is guaranteed.

B. Infinite Horizon H>* Norm Bound

Before stating the results on infinite horizon H* norm
bound, wz derive a Riccati equation from (5) in order
to obtain the similar one as in LQ optimal control
theory. Now we assume that Dy D}, = Dy D, Vk €
[0, 00) throughout this subsection, and introduce the
following notation:

P, = (M{' — DD (15)

Then we obtain from (5)

P — P.D(I + D'B.D) 'D.P, = A Pryi Ax
— AP B (I + By Py 1 B Bl Py Ar + CLGO)

and the following saddle point policies from (7)

il

uy

F(] + BZ-PL--HB&')‘]BZvPI‘4+IAA-$A
Di(l + Py BuBLY ' Py Ava.

I

(17)

For details, see the reference [8]. Now we denote the
optimal state feedback gain and closed loop system
matrix as

U,

(I + By Py B) ' By Py Ax
A = BUKG.

K
F,

Il

(18)



Then the Riccati difference equation (16) will be

P.—B.Dy(I + D'E.D)'D, P,
= CiC + F{' P F{ + K"K} (19)
We note that the left side of the above equation (19)
is equal to M, from the definition (13).

Now, we will show that the solutions of (5) have the
monotonicity property under the following assumption.

Assumption 5 The terminal weighting matrix Q.(> 0)
satisfies the following matrix difference inequality :

Qv > CiC + F(QrL, — DD "Fy + KiK., (20)
where
Ki = (I+B.P\B) 'BLP A
F‘k = Ak it BA.RA-
P = (Q'-DD))"

LEMMA 2 Under the assumption 5, the solutions of (5)
have the following monotonicity property.

M(k,o + 1) < M(k,0) Vk<o @1)
where M(i, j) denotes the solution M; with the terminal
time j.

The following lemma will show that the set of Q;
which satisfies the assumption 5 is a subset of the set
which satisfies the assumption 3.

LEMMA 3 The terminal weighting matrix Q,. such that
satisfies the assumption 5, also satisfies the assumption

3

Now we will show that the infinite horizon H> norm
bound is guaranteed under the above assumption.

THEOREM 3 Suppose that the assumption 1,2,4,5 are
satisfied. Then with the receding horizon control u; =
ug* (24, k), the closed loop system of (1} is stable and
the bound of the H® norm is guaranteed, i.e. |7| <1,
where T is the closed mapping 7 : w — z(zg = 0) :
5[0, 00) — 5[0, 00).

Since the proposed control law guarantee the infinite
horizon H* norm bound, the robustness property in
the sense of disturbance attenuation and other robust-
ness properties of H> control can be achieved.

IV. Conclusion

In this paper, we proposed a control law to guarantee
the closed loop stability and guarantec the infinite
horizon H>* norm bound for time-varying discrete lin-
ear systems. The control law is based on the receding
horizon control strategy in which the finite horizon
H> performance index is employed as an optimization
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criteria on the finite horizon, and the dynamic game
approach is employed to construct an H* controller
on the finite horizon. The closed loop stability and
H™ norm bound can be guaranteed under the pro-
posed conditions on the terminal weighting matrices
in the finite horizon H™> performance index.
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