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Abstract. In this paper we propose an on-line tuning method by using genetic algorithm for
robust minimax I-PD controller based on new criterion. The new criterion is the Integral of
Squared Error (ISE) with a penalty of the derivative of manipulated variable. The work focuses
on robust tuning of I-PD controller’s parameters in the presence of plant parameter uncertainty.
The result of several simulation studies are provided to illustrate the performance of this robust

tunig method.
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1. Introduction

PID and I-PD controllers are effective enough to have
desirable control performance for practical use in most
industrial processes. Although many methods of the de-
sign of I-PD controller have been developed 12l these
methods of tuning parameters of PID and I-PD con-
trollers are experimental and heuristic. One of the main
reason for this is that industrial processes are too com-
plex to obtain precise dynamics of a plant. Therefore,
a controller is required to have robustness property in
that it can attain acceptable control performance and
closed-loop stability in the presence of plant prarameter
uncertainty.

More recently, Lu [*}4 has developed a novel idea of
designing a PID controller based on minimax criterion.
Since no solution algorithms are provided therein, we
have developed a method for designing robust I-PD con-
trollers [81(8]_ in which the design problem is formulated
as a minimax optimization problem, due to Lu’s novel
ideal?h®], Genetic Algorithms (GAs)7™® are known
as one of most effective methods to solve the complex,
large-scale and dynamic optimization problems.

GAs are search algorithm based on the mechanics of
natural selection and natural genetics. They provide
robust yet efficient procedure in finding near-optimal
solutions in complex and large-scale problem spaces.
Many optimization methods require much auxiliary in-
formation or computational time in order to work prop-
erly. For example, gradient techniques need derivatives

in order to be able to climb the current peak, all search
techniques require huge computational time and they
can not be applied to the dynamic optimization prob-
lems, and other local search procedures like the greedy
techniques of combinatorial optimization require access
to most if not all tabular parameters. By contrast, GAs
have no need for all this auxliary information.

In this paper, we use the Integral of Squared Error
(ISE) with a penalty of the derivative of manipulated
variablel!!] as the performance criterion and proposed
the GA based on-line tuning method of robust minimax
I-PD contoller. And we investigate the effectiveness of
this method in the presence of plant parameteres uncer-
tainty in siveral simulation studies.

2. Problem formulation
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Fig.1 Block Diagram

Consider the control system shown in Fig.1, where
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G(s) = P(s)e_Ls is a plant and L is a delay. We use
the second order Padé approximation to the delay, so
that the plant is approximated as

L 2
1- 55 -+ ESZ
G(s) = P(s)- 7 73 (2.1)
ol o2
14 2s+ 123

where P(s) is a rational transfer function. Let 8 be
the parameters in P(s). Taking account of the plant
parameter uncertainty, we assume that 6 belongs to a
bounded set ©.

From Fig.1, the I-PD controller is described by

u(s) = K.

T;s
so that for the step input r(s) = 1/s and disturbance
d(s) = 0, the error is expressed as

1+ K (14+T4s)G(s) 1

(s) = (L+ Tus)y(s) (2.2)

e(s) = T (2.3)
1+ K. (1+ s + Tys)G(s)
and the derivative of manipulated variable is
K.
T, 1
su(s) = L. L(2.9)
L4 K, |me (14 —T28 G(s) °
“|T;s 14+ 4Tys

We use the performance mesure given by ISE (Integral
of Squared Error) with a penalty of the derivative of
manipulated variable[t1],
sure is described by

J(g,6) = /000 {e*(t) + pu®(t)} dt

1 [t

Thus the performance mea-

= le(s)e(=s) + p{su(s)H{-su(-s)}] ds(2.5)

=57 .
where q := (K. T; T4) is the parameter vector of the

controller and € © is the parameter of the plant and
p is a nonnegative weighting constant.

Assume that the denominator of the transfer function
of a plant with Padé approximation for the time delay is
the polynomial of degree n. Then, from (2.3) and (2.4),
e(s) and su(s) are expressed as

B(s) C(s)

e(s) = 1-4_(_3—)- , s-ufs) = A0)

where A(s), B(s), C(s) are polynomials of degrees n.+3,

n+ 2, n+ 2, respectively. Thus both e(s) and su(s) are
necessarily strictly proper.

(2.6)

We see from (2.5) that

J=Ji+p-J2 (2.7)
where
= — (s)e(—s)ds (2.8)
27['] -7

L s =su(-)
Jy = — {su(s)H{—su(—s)}ds
27('_) J—goo
Hence, we can see from (2.6) that both J; and J; are
convergent. Therefore, the performance measure J is

computed by
1 7 B(s)B(-s)

(2.9)

- = AT s = IR .10
=55 e AA(—s) P =0 (2.10)
and
1 7= C(s)C(=s) k
= ST g5 = 1 2.11
T2 =5 i A(5)A(=5) " T2 (2.11)

where k is the degree of A(s) and where Ifz for k =1
to 10 arc listed in Newton et al.l1%

3. On-line tuning algorithm

The problem to be considered is the tuning of I-PD
controller that guarantees certain level of performance
in the presence of plant parameter uncertainty. The
problem is conveniently considered as a minimax opti-
mization problem BI~ELI a5 follows.

r : D
[Tuning problem : |
min max J{(q,8 31
in max, (4,6) (3.1)
s.t. closed loop system is stable of V8 € O J

We assume that ¢ :== (K. T3 Tq) € Q@ ={g|q1 < ¢ <
qu}, a subset of R®. For computational purpos e, let
Q4 := {q;,1 = 1,.... N} be a discrete approximatio n
to the set Q. And we can check the robust stability by
the Kharitonov’s Theorem.

A constraint condition of this problem is considered
the stability of closed-loop system. The auto-tuning
algorithm of I-PD controller consists of the following

steps:

1. Set time t = 0.

2. Observe the plant parameters 8, at time ¢.

3. For the plant parameters 6,, the parameters of I-PD
controller, K., T; and Ty, are tuned by GA during
the sampling interval. (We test the robust stability
by using Kharitonov’s Theorem. )

If time is up, return the best parameters to the
controller.

4. If terminal condition is satisfied, stop. Otherwise go
to 2.

What has to be noticed is that an interval of sampling
time ¢ is fixed and determined beforehand. Assume that
we wish to construct a genetic algorithm to optimize the
problem.
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3.1 Outline of GA

A general procedure of GA consists of the following
steps:

1. Initialize the genes of each individual in the popula-
tion G(k = 0).

2. Generate G(k + 1) from G(k) as follows:
evaluate fitness of each individual in G(k);
select individuals from G(k) using fitness;
recombine them using genetic operators;

3. If terminal condition is satisfied, stop and return the
best individual. Otherwise set k = £+ 1 and go to
2.

The index k indicates the number of generations.

GA comprises a set of individual elements and a set
of biologically inspired operators defined over the pop-
ulation itself. According to evolutionary theories, only
the most suited elements in a population are likely to
survive and generate offspring, thus transmitting their
bioclogical heredity to new generations. In computing
terms, a genetic algorithm maps a problem onto a set
of strings, each string representing a potential solution
of problem. The GA then manipulates the most promis-
ing strings in its search for improved solutions.

3.2 GA formulation

To design a genetic algorithm for the tuning of I-
PD controller, certain problem-dependent algorithm el-
ements need to be defined. They influence both the
efficiency of the algorithm and the quality of its results.

Representation. Gray-code string representation is
employed for candidate solution. Each of the param-
eters K., T; and Ty, is subject to interval constraints,
for example, an interval [a;, a,] is the constraints of the
parameter K., and Ak, is the corresponding discretiza-
tion step. Values of K, from the interval [a;, a,] is rep-
resented as binary strings of [log,(“43*t)] bits. Three
such strings are concatenated into a binary, represent-
ing a point in the parameter space to be searched by
the algorithm.

Fitness function. The linear scaling method is em-
ployed as a fitness function. The fitness f; of the in-
dividual X; at generation k is computed through two
steps. First, the order O; (z = 1. --,p) of each individ-
ual X; iu the population is calculated by using the value
of Equation (6). Then, the fitness f; of the individual
X; is defined as follows:

fi (Enax"'st(Oi'—l))

1
Fs —(Fmax _Fmin))
p—1
where p denotes the population size, Fyax, Finin denote
the maximum and the minimum with the fitness values.

(3.2)

Genetic operators. The genetic operators applied
in algorithm are uniform crossover, bit mutation and

roulette wheel selection. Umniform crossover generates
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two offspring by exchanging a predefined number of al-
ternate subsections between two parent strings. The
recombination operator, mutation, is implemented as
altering bit values at randomly selected string positions.

4. Experimental results

We consider a plant with transfer function.
Ky —Ls
e
1+ Tps

Let the uncertainty of the plant parameters be given by

Ga(s) (4.1)

0 = {ol@s@s AL

0 9 N

and the delay is L = 1.0. We assume that the set Q for
controller is given by

0.1 K, 20.0
Q= {g| |10 |<|Ti|<[1000]} (4.3)

0.25 Tq 100.0

q q Qu

4.1 Off-line tuning

The result of off-line tuning is shown in Table 1 for
weighting constant p = 0.5, where J equals gnaranteed
robust performance.

Table 1 Result of off-line tuning

K. T; Ta J
4.354 3.851 0.421 4.9663972

Fig.2 shows the step responses of closed loop system.
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Fig.2 Step responses of closed loop system
(off-line tuning)

4.2 On-line tuning using GA

In the simulation, each parameter K., T; and T4 has
16 bits of precision, namely, each population member
consists of a 48-bit string. Concerning the parameters of
GA, we determine that the number of population is 50,
the mutation rate is 0.20 and the control parameters of
fitness are (Fax. Fmin) = (10.1). The interval time of



observing plant parameters is fixed as 5 sec. The initial
values of plant parameters are randomly generated in
each constraint condition.

Fig.3 shows the values of the performance measure
J during the search. In the on-line tuning method, the
robust stability is checked at the interval £10% of the
observed plant parameters.

J

~— Oft.line
-==- On-line (10%)

0.00 100.00 200.00

time

300.00 400.00 500.00

Fig.3 Values of the performance measure J
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Fig.4 Step responses of closed loop system
(contolled variable)
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Fig.5 Step responses of closed loop system
(manipulated variable)

431

Figs.4 and 5 show the step responses of closed loop
system using the control parameters in 250 sec.

5. Conclusion

In this paper, we have given an on-line tuning method
of robust minimax I-PD controller with penalty on ma-
nipulated valiable using genetic algorithm. We can rec-
ognize from several numerical simulations that the pro-
posed method is effective for the control of time-varying
plant. Our next work will be application of the present
operation to many problems to investigate its general
effectiveness.
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