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Abstract

In this paper a new approach to obtain the solution
of the linear-quadratic Gaussian control problem for
singularly perturbed discrete-time stochastic systems
is proposed. The alogorithm proposed is based on ex-
ploring the previous results that the exact solution of
the global discrete algebraic Riccati equations is found
in terms of the reduced-order pure-slow and pure-fast
nonsymmetric continuous-time algebraic Riccati equa-
tions and, in addition, the optimal global Kalman filter
is decomposed into pure-slow and pure-fast local opti-
mal filters both driven by the system measurements
and the system optimal control input. It is shown that
the optimal linear-quadratic Gaussian control problem
for singularly perturbed linear discrete systems takes
the complete decomposition and parallelism between
pure-slow and pure-fast filters and controllers.

1 Introduction

Theory of singular perturbations has been very fruit-
ful control engineering research area in the last twenty
five years, [1, 2]. The discrete-time systems have been
the subject of research since early eighties. Several con-
trol researchers have produced important results on
different aspects of control problems of deterministic
singularly perturbed discrete systems such as Phillips,
Blankenship, Mahmoud, Sawan, Khorasani, Naidu and
their coworkers. Particularly important are the funda-
mental results of Khalil and Litkouhi, [3, 4]. Along the
lines of research of Khalil and Litkouhi in the papers
of Gajic and Shen [5, 6] an extension of the linear-
quadratic control problem of [3] and the formulation
and solution of the linear-quadratic Gaussian stochas-
tic control problem are obtained. In this paper, we
introduce a completely new approach pretty much dif-
ferent than all other methods used so far in the the-
ory of singular perturbations. It is well known that
the main goal in the control theory of singular pertur-
bations is to achieve the problem decomposition into
slow and fast time scales. Our approach is based on
a closed-loop decomposition technique which guaran-
tees complete decomposition of the optimal filters and
regulators and distribution of all required off-line and
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on-line computations.

In the regulation problem (optimal linear-quadratic
control problem), it is shown in [7] how +» decom-
pose exactly the ill-defined discrete-time singularly per-
turbed algebraic Riccati equation into two reduced-
order pure-slow and pure-fast well-defined continuous-
time algebraic Riccati equations. Note that the
reduced-order continuous-time algebraic Riccati equa-
tions are nonsymmetric, but their O(¢) approxima-
tions are symmetric ohes. We show that the Newton
method is very efficient for their solutions since the ini-
tial guesses close an O(¢) to the exact solutions can be
easily obtained from the results already available in [3].

In the filtering problem, in addition of using duality
between filter and regulator to solve the discrete-time
ill-defined filter algebraic Riccati equation in terms of
the reduced-order pure-slow and pure-fast well-defined
continuous-time algebraic Riccati equations, we have
obtained completely independent pure-slow and pure-
fast Kalman filters both driven by the system measure-
ments and the system optimal control input {7]. In the
literature of linear stochastic singularly perturbed sys-
tems, it is possible to find exactly decomposed slow
and fast Kalman filters ([8] for continuous-time sys-
tems, and [5] for discrete-time systems), but those fil-
ters are driven by the innovation process so that the
additional communication channels have to be formed
in order to construct the innovation process.

In this paper, we use the separation principle and
the results of [9] and [7] to solve the linear-quadratic
Gaussian control problem of singularly perturbed dis-
crete systems. A real world control example is solved
in order to demonstrate the proposed method.

2 Linear-Quadratic Gaussian Optimal

Control Problem

This section presents a new approach in the study of
the LQG control problem of singularly perturbed dis-
crete systems when the performance index is defined on
an infinite-time period. The discrete-time LQG prob-
lem of a singularly perturbed system has been studied
for the full state feedback in [5] and for the output feed-
back in [10]. We will solve the LQG problem by using



the results obtained in [7]. That is, the discrete alge-
braic Riccati equation, which is the main equation in
the optimal control problem of the singularly perturbed
discrete system, is completely and exactly decomposed
into two reduced-order continuous-time algebraic Ric-
cati equations.

Consider the singularly perturbed discrete linear
stochastic system represented in the fast time scale

by [5]

zy(k+1) = (I, +eAy)z (k) +€eAgza (k)
+eByu (k) + eGywy (k)
za(k+1) = A3z (k) + Agze (k) + Bou (k)
+Gaw; (k) 1
y(k) = Cizi(k)+Cozo (k) +w2 (k)

with the performance criterion

J= %E’{g[zT(k)z(k)+uT(k)Ru(k)]}, R>0

(2)
where z; € R™, i = 1,2, comprise slow and fast state
vectors, respectively. 4 € R™ is the control input,
y € R! is the observed output, w; € R" and wy € R’
are independent zero-mean stationary Gaussian mutu-
ally uncorrelated white noise processes with intensities
W1 > 0 and Wa > 0, respectively, and z € R? is the
controlled output given by

z (k) = D1z; (k) + Doz (k) 3)

All matrices are of appropriate dimensions and as-

sumed to be constant.
The optimal control law of the system (1) with per-
formance criterion (2) is given by [11]
u (k) = —Fz (k) (4)

with the time-invariant filter

2(k+1)= Az (k) + Bu(k) + K [y (k) — C (k)] (5)
€Ay

[ oo

|
c=ic al, K=[ ]

The regulator gain F and filter gain K are obtained
from
F=(R+BTPgB) " BTPRA 6)

K = APpCT (Wy + CPpCT) ™ )
where Pp and Pr are positive semidefinite stabilizing
solutions of the discrete-time algebraic regulator and
filter Riccati equations [12], respectively, given by

Pg DTD + ATPpA
—ATPRB (R+ BTPgB) " BTPzA (8)

I”l + €A1
Aj

CBI
B,

€K1
K;
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Pr

APpAT — APpCT (Wp + CPrCT) ™' CPpAT
where
6G1

+GW,GT (9)
o |

The required solutions Pr and Pp in the fast time
scale version have the forms

] |

PL, Pm

In obtaining the required solutions of (8) and (9)
in terms of the reduced-order problems, [6] has used a
bilinear transformation technique introduced in [13] to
transform the discrete-time algebraic Riccati equation
into the continuous-time algebraic Riccati equation. In
our case, the exact decomposition method of the dis-
crete algebraic regulator and filter Riccati equations
produces two sets of two reduced-order nonsymmetric
algebraic Riccati equations, that is, for the regulator

(11)

D =Dy, D), Gz[

€Ppo
Pps

€Ppy

Pr= [ ePL,

] (10)

Piay — a4P, — a3z + PiasP, =0

Pyby — b4 P — b3 + PobyPy =0 (12)
and for the filter
Psbyp — bsp Py — bap + PybopPy =0 (14)

where the unknown coefficients can be obtained from
the result of [7]. The Newton algorithm can be used
efficiently in solving the reduced-order nonsymmetric
Riccati equations (11)-(14).

It has been shown in (7] that the optimal global
Kalman filter, based on the exact decomposition tech-
nique, is decomposed into pure-slow and pure-fast lo-
cal optimal filters both driven by the system measure-
ments. As a result, the coefficients of the optimal pure-
slow filter are functions of the solution of the pure-slow
Riccati equation only and those of the pure-fast filter
are functions of the solution of the pure-fast Riccati
equation only. Thus, these two filters can be imple-
mented independently in the different time scales (slow
and fast). The pure-slow and pure-fast filters are, re-
spectively, given by

Ak +1) = (a17 +a2rPs)T 7, (k)
+K,y (k) + B,u (k)
Ap(k+1) = (bir +barPy)7 iy (k)
+Kyy (k) + Byu (k) (15)
where

B,
By
Matrices Il and IIzr can be found in [7]. It should
be noted that the filtering method proposed for singu-
larly perturbed linear discrete systems allows complete

] =T;7B = (ir + MyrPr) T B



decomposition and parallelism between pure-slow and
pure-fast filters.

The optimal control in the new coordinates has been
obtained as

ww=-rstr = 3]

- (& 5120 ] (16)

where F, and Fy are obtained from
[ F, Fp]|=FT]
= (R+ BTPgB) ™ BTPrA (Wi + MorPr)” (17)

The optimal value of J is given by the very well-
known form [11]

Jow = gt [D"DPp + PrK (CPeCT + Wa) K]
(18)
where F, K, Pg, and Pr are obtained from (6)-(9).
Corresponding block diagram which represents
clearly the proposed method is given in Figure 1. It
is very interesting that the proposed scheme for the
linear singularly perturbed discrete systems, with cor-
responding matrix coefficients, can be represented by
the same structure of the block diagram as the one for
the continuous systems in [14].

Example 2:

In order to demonstrate the efficiency of the pro-
posed method, we consider a real world control system
— a fifth-order discrete model of a steam power sys-
tem [15]. The system matrices are given by

A=
09150 0.0510 0.0380 0.0150 0.0380
—0.0300 0.8800 —0.0005 0.0460 0.1110
~0.0060 04680 0.2470 0.0140 0.0480
—-0.7150 —0.0220 -—0.0211 0.2400 -0.0240
—0.1480 —0.0030 —0.0040 0.0900 0.0260

B=[00098 01220 0.0360 05620 0.1150 |”

and other matrices are chosen as

11000
SICERRT

001
DTD =diag{ 5 5 5 5 5}, R=1I

It is assumed that G = B and that the white noise
processes are independent and have intensities

Wy =5, Wa=diag{ 5 5}

It is shown [15] that this model possesses the singularly
perturbed property with n; = 2, nz = 3, and € = 0.264.

The obtained solutions for the LQG control problem
are summarized as following,.

The completely decoupled filters driven by measure-
ments y are given as

A 0.8804 0.0428 ]
ﬂa(k+1)=[—0.0481 0.7824]"’(k)

01045 0.0643 0.0629
+[ 0.1717 0.2780 ] y(k) + [ 0.3650 ] u(k)

0.2606 —0.0112 —0.0158

fig(k+1)=| —0.0533 0.1822 —0.0585 | 7y (k)
—0.0224 0.0662  0.0069
—0.0044 —0.0163 —0.0458

+| 00164 00741 [y(k)+| 05590 | u(k)
0.0067  0.0296 0.1157

The feedback control in the new coordinates is given

u(k) = [0.1407 —0.3068 ], (k)

—[ 01918 0.3705 0.1019 ]y (k)

The difference of the performance criterion between
the optimal value, Jox, and the one of the proposed
method, J, is given by

6.73495
0.7727 x 10713

Jop =
J—Jom =

In obtaining the optimal value of performance criterion,
Jopt, We have used a bilinear transformation technique
developed in {13].

It should be noted that the results represented
here in solving via the Newton method recursively the
reduced-order nonsymmetric algebraic Riccati equa-
tions for filter and regulator (11)-(14), are obtained by
using the number of iterations of i = 5, respectively.

3 Conclusion

In this paper we developed a new approach to solve
the LQG optimal control for linear singularly perturbed
discrete stochastic systems. The main idea of the pro-
posed method is in the fact that the ill-defined discrete
time singularly perturbed algebraic Riccati equation is
exactly decomposed into two reduced-order pure-slow
and pure-fast well-defined continuous time algebraic
Riccati equations. A very important feature of the
obtained results is that it allows complete time-scale
parallelism of the filtering and control tasks through
the complete and exact decomposition of the optimal
control and filtering problems into slow and fast time
scales, which reduces both off-line and on-line required
computations.

References
[1] P. Kokotovic and H. Khalil. Singular Perturba-
tions in Systems and Control. IEEE Press, New
York, 1986.



y
G i“’z
B [~ System C —>O—
]
A Bs
F T‘ S SlOW
s Filter It Ks
A B
nf Fast <]
Fg , K
Filter f

Figure 1: Block diagram representation of the reduced-order stochastic control
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