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Abstracts The problem of compliant motion control using a redundant manipulator is addressed in this article.
Specifically, a hybrid-control type and impedance-control type controllers are extended to general redundant
manipulators based on the kinematically decomposed and geometrically compatible modeling of its joint space.
In the case of the hybrid controller, it leads to the linear and decoupled closed-loop dynamics in the three motion
spaces, that i1s the motion-controlled, force-controlled, and the null motion-controlled spaces of the redundant
manipulator. When the proposed impedance controller is applied, the decoupled impedance models in three
motion spaces are obtained. The superiority of the proposed controllers 1s verified with the numerical experiments.

Keywords Kinematic redundancy, Kinematically decomposed and geometrically compatible modeling,

Compliant motion controller

INTRODUCTION

To apply a manipulator into a task in presence of con-
tact with environments, a compliant motion controller
1s required. The design of a compliant motion con-
troller was complicated when the manipulator is kine-
matically redundant [1, 6, 7]. The main obstruction is
involvement of possible null motions, which are intrinsic
in redundant manipulators. Recently, a dynamic con-
troller, called the kinematically decomposed dynamic
controller, was proposed for redundant manipulators
which can guarantee stable null motion dynamics [8].

This article attempts to incorporate the conventional
compliant motion controllers, that is the hybrid posi-
tion/force controller [3, 5, 9] and the impedance con-
troller [4], into the kinematically decomposed dynamic
controller. First, the equations of motion of redun-
dant manipulators are reformulated to ones oriented to
the compliant motion controller design, based on the
kinematically decomposed and geometrically compati-
ble modeling. Next, we propose two compliant motion
controllers for redundant manipulators.

KINEMATIC DECOMPOSITION OF THE
JOINT SPACE

Assume that the pose of a manipulator is denoted
by a joint configuration ¢ € R” and a task space is
parametrized with m independent coordinates. The
degrees of redundancy is r = n — m. Recently, a use-
ful coordinate transformation was proposed (8], called
the kinematically decomposed modeling, under which
a joint velocity ¢ can be decomposed into

(I - R(Q)Qnet + N(q)quull' (1)

The matrices R € R**™ and N € R"*" are subma-
trices of the right singular matrix of the manipulator
Jacobian J € ®™*", that is

< T

J=U[X 0][R N, (2)

where U € R™*™ is the orthogonal matrix, and ¥ €

R™*™ is a diagonal matrix of the singular values of J.

The matrices R and IN enables the following three
properties: the minimal representation property,

a4 = J'Jq=Rq,. (3)
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) A . .
dn = (I - J+J)q = Nqnull (4)
the filtering property,
(.In-et RTq (5)
qnull NTq (6)
and the correspondence with the task velocity,
Qnee = (TR)'p. (7

Rearranging Eqs. (3) and (4) in matrix form, we get
a coordinate transformation as following:

g=R(JR) 'p+ Nq,,u (8)

Using the above coordinate transformation matrix, the
joint acceleration is expressed by

d = R(}net + Nénull + RQnret + NQnulI' (9)

The calculations of R and N are required and was an-
alytically found in [8].

GEOMETRICALLY COMPATIBLE
SPACE DECOMPOSITION

Let us introduce an additional coordinate transfor-
mation which transforms the standard coordinates of
the task space into new orthogonal ones. The new
orthogonal coordinates can be same as the standard
ones, or can be new ones which are useful to describe
some compliant motion task. We are to define new
coordinate value vectors, denoted by #p € R* and
rp & R = m — k), with suitable coordinate bases
Er ¢ ®%% and Ep € 7%, and decompose p € R™
as follows

The compatible coordinates to a given task geometry
which 1s specified with the equations of hypersurface
{on which the task 1s to be executed in usual applica-
tions)

TASK

rp

i (10)

p-ime 0

o1(p)
0=d(p) = :
or(p)

(11)



Figure 1. Task description in 3 dimensional space

1s obtained as follows. Let us denote by J, the Jacobian
of ¢(p). The singular value decomposition of J, €

Rk xm vields the right singular matrix V,
Vo= Er Ep), (12)

where Ep € R™*F and Ep € R™*!. By Defining 7 p
and rp as

Ebp
Elp,

Tp
rp =
we obtain the geometrically compatible task space de-
composition. The matrice;s Ep and EF can be calcu-
lated in a similar way as R and V.

For example, if we are given one equation which de-
fines a constraint, say ¢(p) = 0, then it defines the sur-
face in 3 dimensional task space. Then taking the right
singular matrix of J, € R1%% we get Ep = [eb]eld)]
and Ef = [eg)]. They can be geometrically visualized
as Fig. 1.

FORMULATION OF EQUATIONS OF MO-
TION

Taking the transformations Eq. (10) with Eq. (8), we
get the following unique transformation matrix

Ep TP )
R(JR)‘WN] [ ‘-E‘J)EF] H ( T > =q.
L’

(15)
Hereafter, we call this equation the kinematically de-
composed and geometrically compatible modeling, since
a joint variable g is decomposed into the null motion
variable and the task variable which again is decom-
posed into two subspaces which are compatible to a
given task geometry. By the duality between the mo-
tion and force at the static equilibrium, the torque
T € R" and each force denoted by fp € R, fp € RF,
or Tpun € R respectively, which defines a work with
each decomposed motion variable (or 7p, 7p. g,u).
are related by

T = JT{Epr + EF.f[«‘} + NTnuII-

In the mean time, let us assume that the dynamic
equations of a redundant manipulator are of the form

(17)

(16)

T = M(q)q + h{q.q).

where M (g) € R"*" is the inertia matrix and h(q, q) €
R™ denotes all the dynamic forces except the inertial
torque. Expressing the equations of motion in Eq.(17)
with respect to the new coordinates yields a different,
but equivalent, equations of motion

;
T = M|[RUJR) N [ [EP(']EF] (I)] ( r? )
Qnull
d - rp
+ M= [RIR)TN] [ \Er|Er] ‘1).] ( P )
9nuil
o d ;
+ MR(JR) IE[EPIEF]< mﬁ)
+ h+ J{Epfp+Erfr}+ Ntou (18)

The equations of motion is called the kinematically de-
composed and geometrically compatible dynamic equa-
tions of redundant manipulators.

IN HYBRID CONTROL FASHION

Hybrid position/force controller [3. 5, 9] attempts to
directly utilize the mformation on the task geometry.
The hybrid controller is valid on the assumptions. re-
ferred to as the orthogonality of the motion-controlled
and force-controlled subspaces, and the assumptions are
expressed 1 our formulation as

0
0

(19)
(20)

TF=TF
fe.

When there is assumed to exist no constraints in self-
motion of manipulators, it is

Trun = 0. (21)

On the belief that the assumptions are valid, we de-
sign a dynamic hybrid controller using the kinemait-
ically decomposed and geometrically compatible dy-
namic model of redundant manipulators. First, we de-
fine a feedback linearization law, to compensate all non-
linearities involved 1n robot motion, as follows

" up
r = M R(JR)_IIN][[EPJ)EI‘] 2]( 0 )
Unull
+ JYEpup+h (22)
where h(q, q) is
. | 3 : rp
h = M= [RUR)|N| (Er|Er] O e
dt 0 I i
Tnull
+ MR(JR)™ [EP|EF] ( Al >+n (23)

Second, it remains to design a outer loop controller to
stabilize the feedback-linearized closed loop system.

If the assumptions of Eqs.(21), (19), and (20) are
valid, then the closed loop systems are decomposed into
three spaces, and each is linearized:

0 up — ’f’p (24)
0 = up—fp (25)
0 = Upyll — énu”v (26)



Table 1. Parameters of the manipulator
length | c.oom. | mass nertia
i{m) | r(m) | m(kg) | I(kg x m?)

1 0.3 0.15 20.0 0.15

2 0.25 | 0.125 10.0 0.0521

3 0.2 0.1 10.0 0.0333

if the following matrix is nonsingular

Alq)=| MR(JR)"'Ep JTEp MN]. (27)

IN IMPEDANCE CONTROL FASHION

In this section we develop an impedance controller {2,
4] based on the kinematically decomposed and geomet-
rically compatible dynamic model of redundant manip-
ulators. We want to reshape the dynamics of manipula-
tor to have the following decoupled target impedances

fp = Mpép+ Dpep+ Kpep (28)
-fF = Mypep+ Drep+ Krep (29)
Tnull = Dnénull + Knénulle (30)

where ep = rpqg —7rp, ep = rpqa—7p, and e, =

(‘Inull,d —'qnull' ) )
To achieve the target impedances, the following con-
trol law should be used

T = h (31)
+ M [R(JR)_IIN] [ [EPIEF] 0 ]
T‘Pd+Mp (Dpep + Kpep)
x| #rq+ MZ! (DF€F+KF8F
Qnulld+D K enull
- Er] 0 -
+ {—M [R(IR)|N] [ [Ep|Er] I]A !
fp
+[J"Ep JTEFr N} fr ). (32)
Thull
where
Mzt 0 0
A" q) = 0 Mz 0 (33)
0 0 D!

Note that the null motion is modulated by the null mo-
tion 1mpedance, which guarantees the stable zero dy-
namics of the redundant manipulator.

NUMERICAL EXPERIMENTS

A planar 3-dof manipulator is employed to simulate
the controllers. The parameters are shown in Table 1.

There is assumed to exist africtionless vertical wall at
£ = 0.4(m), whose right-hand side is constrained. The
constrained force is modeled as the spring and damp-

ing force. whose stiffiess and damping coefficients are:
Koo = 100000(N/m), and D¢y = 100(N -« sec/m).
That is,

fénv - 1\.5’nv(r - 04) + [)erll,i?. (34)

Figure 2. Description of the simulated system

The desired trajectory is the straight line from
(0.4, -0.4)(m) to (0.4,0.4)(m) which is interpolated,
during 1{sec) by the quintic polynomial with zero veloc-
ity and jerk condition at the boundaries. The desired
forces at the initial and final position are (10, 0)(1\/) and
(50,0)(N). The intermediate force trajectory is gener-
ated by the linear parabolic blend interpolation. The
desired null motion was generated in order to maximize
the manipulability measure m(q) as following [8]

5

(.Inull,d = ’{NTvm: (3 )
where x = 100.

The initial state of the manipulator is: g4 = (-90.0,
54.9928, 47.5458)(°), g4 = (0.0, 0.0, 0.0) (rad/sec), and
the initial torque is set zero. Note that the initial con-
figuration corresponds to the initial position, while the
desired initial force 10N cannot be achieved at the ini-
tial configuration. That is, at ¢ = 0.0 the force tra-
jectory is a kind of step input. Thereafter it is linear-
parabolically blended ramp input. The description of
the simulated system is illustrated in Fig. 2.

The controller is implemented on the assumption that
the state of the manipulator (g7, i]T)T and the tip force
f are perfectly measured and the parameter is exactly
estimated. Also, there is assumed to be no hardware
limitations, for example, in achievable torque and joint
travel limit. The control frequency is set by 1kHz. As
the servo outer loops for the hybrid position/force con-

trol, we employ the following simple linear controllers:

up = i;P,d+KP€P+DPéP+IP/t?P(36)
up = fp,d+KF€F+IF/€F (37)
Unyll = énull,d + Knénull + In /énull‘ (38)

where €p = fra—Fr, ep_.'rpd—rp,and epull =
dnuitd — Qnuy- When the gains are: K, = 1000, Dp =
50, Ip = 5, Kp = 10, Ir = 10, K, = 100, I,, = 0, the
control performance is shown in Fig. 3.

For the impedance controller configuration, the de-
sired decomposed impedance parameters are set as:
Kp =1000. Dp =22, Mp = |, Ky = 1000. Dp = 100.
Mp =5, Ky = 100, D,, = 1. The simulation result
is shown in Fig. 4. Note that the desired x-trajectory
was modified to generate the similar force trajectory as
seen in Fig. 4 (d). That is, the virtual x-trajectory is
from 0.41(m) to 0.46(m).



In both cases, the expected control performance was
achieved. The initial oscillations in torque and joint
velocity are due to the step response of force trajec-
tory. Note that the force as well as null velocity re-
sponses show exponentially tracking property in spite
of the initial error. Also, the tracking performance in
the motion-controlled space is not affected by the initial
errors in force and null motion.

CONCLUSION

In this article the compliant motion controllers for
kinematically redundant manipulators were developed.
They are based on the kinematically decomposed and
geometrically compatible modeling of joint space. The
modeling is general and analytic. The main advan-
tage of the proposed controllers is that they can de-
compose the closed-loop dynamics of the manipulator
into the motion-controlled, force-controlled, and null
motion-controlled spaces, and reshape each into linear
and decoupled one.
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Figure 4. Simulation result in impedance con-
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