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Abstract In this paper. we investigate so-called the falling cat problem. It is well known that a cat. when
released from an upside down configuration starting from rest, is able to land on her feet without violating angular
momentum conservation. This has being an interesting problem for engineers for a long timme. We cousider a
model of a falling cat as conunected two rigid columns, which is a nonholonomic system. We design the controller
for it, using time-state control form of the model and exact linearization technique. Finally, we test the controller

thorough simulation on the model of a falling cat.
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1 Introduction

It is well known that a cat, when released from an up-
side down configuration starting from rest, usually land
on her feet. As shown in Fig 2. at glance. it seems that
the angular momentum conservation is violated. How
does a falling cat make it without violating angular
momentum conservation? This phenomenon give rise
to questions to control engineer. mechanical engineer,
mathematician, and robotics.

Classical study[1-3], the main point was to explain
the movement. Recently in [4], Kawamura showed that
make a robot. which has two rigid body. But. the con-
figuration, when the robot cat land on. was neglected.

In this paper we analy the falling cat phenomenon,
design the controller which makes it land in right con-
figuration, and verify it through simulation.

2 Control of a Falling Cat
2.1 Model

The model (as shown Fig.1) consists of two links which
are rigid and identical. Each link corresponds to a limb.
The model has no head. no feet and no tail. We assume
that links are column and rotate around its centroidal
principal axis.
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Figure 1: Two Link Model
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The definition of the in Fig.1 as follows:

st the centroidal principal axis of column
r : the axis through the center of column’s
gravity
6y : the angle around s
(twisting angle)
20, : the angle between principal axes of inertia
of colummns (bending angle)
¢ : the angle around the axis r
I, :  the inertial moment around s
I, : the inertial moment around perpendicular of s

introduce frame s which is centroidal principal axe of
inertia of body, frame r which passes through the center
of either mass, the angle between centroidal principal
axes of inertia of bode keeps 26;. I; means the inertial
momtent in frame s. and I,. does the inertial moment in
frame r.

2.2 State Equation

The law of momentum conservation yields the equation:
21,6 + 21,61 cosf, = 0

Suppose
I, = I cos? 0, + I, sin? 6,

where I is the inertial moment in frame r. combining
these two equation leads to

d ¢ A 0
a 9] = 1 u; + 0 Us (1)
6, 0 1
.and
I cos 8
A _ _ 1 COsS Ug —
I, cos? 6 + I sin” 6,
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Uy =

dt



where {¢.601.0,)7T is a state vector. u1 and uq are control
inputs.

2.3 Time-State control from

The system (1) can not be stabilized with any contin-
uous static state feedbacks. i.e. there do not exist any
continuous functions. Time-state control form is pro-
posed of this systewnr in order to overconte this problem.
First, we trausform the state equation (1) into a time-
state control form.

Difine the difference between angles and their desired
ones as follows.

¢=0¢-¢

f1 = 61 - 6;

by = 6, — 6,
where 5 0Al. é:_; are desired angles. With the coordinate
transformation:

6 =3+ I, cos 0; —

I cos? 0; + I sin? (;2

the state equation is transformed into

7(8) = (0)-()m e

dr dfy
—_— = —= = g 2-b
dt ar M (2-b)
where
I cos (fg + 52)
B = - — —
I, cos? (52 + 92) + I sin? (52 + 02)
1, cos (;2
I cos? 52 + I, sin? 52
(%]
1= —
uy
pz =y

The state equation (2-a) is called as the state control
part. Its state is (£1.£2)7 and the new time scale is 7.
The equation (2-b) is called the time control part. It
is controlled by single input jo. In other words. while
monotonally increasing 6. which corresponds to the
twisting angle. we control the angle 8, which corre-
sponds to the bending angle.

Figure 2: Falling Cat Phenomenon
Kodansha Panorama Pictorial Book "CAT[1]
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2.4 Exactly Linearization

Since the state control part (2-a) is a controllable sec-

ond order nonlinear system. it may be exactly linearized.

we define some veriable to simplify the statement.

m =&
I cos (fz + 52)
2 = = P 3 P
I, cos? (&2 + 02) + Iy sin (éz + 92)
I cos 52
I, cos? 8y + I» sin® 52
C
v = _ — (3)
2 (11 cos? 05 + I sin? 92)
where
C = L{3I,-2I)sin (fg + 52) cos? <52 + 52)

+ I [ sin® (52 + gg)

and v is a new input. Then the state control part (2-
a) will be transformed into the following linear state
equation without approximation.

d 7 . 0 1 7 0
()=o) (m)r(V)rw

Thus we can readily design a stabilizing controller for
system (4). For example, a linear static state feedback

v=Fn

Finally may be chosen, we get the original input g,
from equation (3).

3 Simulation

3.1 Limitation of Input

The results of the observation are the maximum of 6,
is about 100[deg] and a falling cat needs about 50[cm]
hieight. From the second observation. we see that 6, is
20[rad/s] and assume the maximum of 5 is 20[rad/s].

Fig.3 and Fig.4 show the results of simulation. When
a falling cat land, the deviation between angles and
their desired values are follows.

A falling cat, when released from initial position be-
tween -10[deg] and 10[deg]. suffer from the Hmitation of
iput, it was stabilized with feedback mevertje:es.

4 Conclusion

In this paper. we studied how to control a falling cat.
especially its configuration at landing time. The sys-
tewn can not be stabilized by any continuous static state
fecedbacks. because it is a nonholonomic system. We
can design the controller for the system using time-
state control form and the exact linearization technique,
both 1ts rotation and configuration.
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Figure 4: Initial Position = 90.0[deg]



Table 1: Deviation of angles

Initial Position{deg] | ¢ — <Z>[ra.d] 63 — f,]rad]

-10 -0.000321 -0.0104
0 0.00246 -0.0138
10 0.00465 -0.0173
30 -0.0150 -0.0295
60 -0.0137 -0.128
90 0.0223 0.00901
120 -0.0137 0.128

150 -0.0612 0.149
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