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Tracking a Constant Speed Maneuvering Target Using IMM Method
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Abstracts An interacting multiple model (IMM) approach which merges two hypotheses for the situations of constant speed and
constant acceleration model is considered for the tracking of maneuvering target. The inflexibility of uncertainty which lies in the
kinematic constraint (KC) represented by pseudomeasurement noise variance is compensated by the mixing of estimates from two model
Kalman tracker: one with KC and one without KC. The numerically simulated tracking performance is compared for the "great circular
like turning” trajectory maneuver by the single model tracker with constant speed KC and two model tracker which is developed in this

paper.
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1. INTRODUCTION

The kinematic constraint (KC) gives effectual additional a
priori information to the target tracking filter when its motion
is delivered within the given constraints specially for the
maneuver [1]. And the incorporation of additional constraint as
a pseudomeasurement was proposed [1,2] by virtue of the
computational rationale to manage the nonlinear structures of
most KCs in extended forms. The constraint of constant speed
which is one of the most possible cases of maneuver was

simulated with various tracking filter structures [2,3,4].

However, most of the actual maneuvering motions can not
always satisfy the given specific additional KC during the
tracking periods. Thus, despite the noticeable achievements in
the state estimations by the kinematically constrained Kalman
filter (KCKF), the KC sometimes causes mismodeling to the
filter formulations and finally results in track loss. Some
formulations selecting a large initial pseudomeasurement noise
variance and decreasing it with an empirical rates [2,3] gives
reasonable management of KC under the satisfaction of KC by
the target dynamics. But the abrupt outbreak of target states
from the specified KC during the maneuver still makes the
tracking filter mismodeled. Therefore, the rigid adherence of
KC according to the invariant existence once it is incorporated
into the filter structure needs an adaptive adjustment or
reasonable reformulation to maintain the benefits of KC for the

maneuver.

One of the noble approaches to the maneuvering target
tracking problems represented as interacting multiple model
(IMM) algorithm is the assumptions of multiple Gaussian
hypotheses which can be possibly modeled mathematically and
merged in fixed depth with certain degree of freedom [5,7].
IMM algorithm enables to construct the other target model to
compensate the single KCKF. Thus two different model filters
are batched in parallel structure and their estimations are

combined according to the corresponding mode! probability.
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The general dynamic model formulation for this target state
estimation problem is reviewed in section 2 and the
incorporation of kinematic constraint for constant speed
maneuver and its new management with IMM are described in
section 3. Section 4 shows the simple numerical comparison of
tracking performances between single modeled kinematically
constrained Kalman filter (KCKF) and two modeled parallel
Kalman filters using IMM algorithm (KCKF-IMM). The
conclusions and future aspects of this study are discussed in
section 5.

2. PROBLEM FORMULATION

2.1 Modeling of Target
The linear dynamic modet for the state estimation in discrete
time-invariant system can be given by
X =9 X +¥'o0, ¢))
where x: - ro*(j=1.2) is the state vector with position,
velocity and acceleration and ! e ¥(0.Q') is process noise
sequence at time k for i-th model. For the computational
simplicity, the system is assumed in three dimensional
Cartesian coordination and the control input which is not
observable directly from the tracker is included in the state of
acceleration for convenience. Thus the state vector x . and its
transition matrix ' e R** in (1) can be written with sampling
period T, respectively as

Xe=lxme & x oy % »w o oz alf @)
F' 0 0 1 T 0.57?

=0 F O|,whereF=0 1 T 3)
0 0 F 00 1

and the process noise gain matrix ¥’ = R is given as



G 0 0 0.57*
¥=|0 G O |whereG=| T
0 0 G 1

“)

2.2 Measurement and Estimation of Target States
The measurement by discrete single sensor in polar
coordinate frame can be written as

Zisy = il H Vi (5)
where z,,, is the measurement vector with range, azimuth and

elevation. Despite the correlation between the rnongaussian
measurement noise and the measurement vector components,
Ve, € N(0,©) is usually assumed to be Gaussian and

uncorrelated  with measurement components for the
convenience in computing probabilities in later derivations.
And the process and measurement noises are assumed to be
uncorrelated so that

E[wi(v)']=0, forV k, j (6)

3. KC MANAGEMENT WITH IMM

3.1 KC for Constant Speed Motion.

To introduce the kinematic constraint (KC) in the filtering
problem, the selected set of state variables for the constraint is
treated as an additional pseudomeasurement [1,2,3]. The
rationale for this method is due to the fact that the
pseudomeasurement can be structured linearized form
algebraically. The noise variance of pseudomeasurement
interpreted as an uncertainty of additional KC relaxes the error
from the linearization of nonlinear KCs. Therefore, the
additional KC can be easily incorporated to the cost function of
the least square filter as an additional a priori information. The
improvement in target tracking problem with this idea is mainly
attributed to the reduced errors of the estimated state variables
which are relevant to the given KC.

The nonlinear KC is defined as

C(X)=0 )]
And (7) can be linearized using the predicted estimation of
optimal filter which is numerically reasonably close to the true
state. So by using the first two terms of Taylor series, (7) can
be written as

aC
C(Xk)= C(Xk|k—l)+—— (Xk - xklk-l) (8)
oX X=xn|n—l
By defining the uncertainty factor of KC as x, , we obtain
aC dC
Ky =77 X '[3")? ) Xk|k—l - C(Xklk—x)] ®
X=Xyt X=X
K, is zero-mean white Gaussian with variances as
Elk, (k) 1=Q5, (10)

Defining the vectors for the velocities and accelerations in

Cartesian coordination, respectively like
o o T

Vislx, v %l (11)
- .. .. oo T
Av=[x, y, 2zl (12)

We can get the KC of constant speed as
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CX)=VeAc=xi-xe+y, y,+zk- 24 =0 (13)
By extending (13) as in (9) and calculating the Jacobian of KC
about the predicted estimates it leads to

Cife-1 = Ek[k-] X, K, 14)
where Chfer = o€ 15)
axk Xy =xk|n»l
= —_ - -
and Cie-1 = Cfe-1 - Xies =V ki1 e (16)

3.2 Two Model Tracker Using IMM
Considering the 2 models for the maximum a posteriori
estimates with the Gaussian conditional pdf of X, .and using

Chapmann-Kolmogorov equation for the discrete pdf, the
conditional pdf of the state X, can be written as

2
PX,|241= Y, pLX, | ML, Z4pLMi[24) (17)
i=1

where M, is the model parameter of KCKF and M7 is that of
KF. z* is the set of cumulated measurement vectors up to time
kso that ,( p; jz,) can be a probability of model i(=1,2) during
the time 0<¢< k. For the maximum a posteriori estimation,
the given model conditioned pdfin (17) can be written as

P[Xk|M;ink]= p[xklMli'zk'Zk—l] (18)

Using the Bayes theorem the pdf of (18) can be rewritten as
Pl | Mp.X,]

.p[zk Mlivzk—l]

The first term of right side in (19) is the conditional Gaussian
pdf for the one-step prediction in i-th model. And for the model
transition from time r=k-1 to r=k and interacting (mixing) with
the rest of the models including itself, it can be decomposed

using the Champmann-Kolmogorov equation as follows
pLX,| M2

PUX| Mi2, 2= pI XM ZH) 19

2
= PXe MLLY POXe |2 UM | MEZE) (20
=

The mixing of models is approximated by the probabilitically
weighted summations of two model conditioned estimates and
their covariances at past through time. and Gaussian pdf is
approximated by matching the moment of two Gaussians to
single Gaussian pdf.

The second term of the summation in (20) can be
decomposed by using the Markovian chain like

f k-1
p[Mj IMi Zk—I]= AUP[M’{-I Z7]
“ LA

And the term A, stands for the probability of the model

(2n

transition from model j to i like | o ; IM /,z+-" and
N
PIMI|Z =Y A pIME |24 @)
j=!

Therefore, using these results (20) leads to
pIX, | MLZ



. pIMI_|Z*"
= pIX| M3, PIIX|Z11A, e

| ; 27, LM {ZH]
p[M,i_,lz""] of (30) is updated by the likelihood function

using the residuals and its covariances as

1 % ;
kaAi‘P[MI{—x zY
plz "3 |

(23)

LA (24)

The term A, which is p[z,‘IM,';,ZH] can be interpreted as the
likelihood function for the i-th model.

3.3 Algorithm of Two Model Tracker
Step 1. mixing of two different estimates

!
oi _ J J
X1 = Z'f’\ij Xt M-t
j=1 Ci

where n,{_, is the updated normalized model probability from

(25.1)

(24) and c_‘,' is the other normalization constant from

- N )
ci= ZAUHZ_,

=1

(25.2)

And the error covariances are mixed using the filtered estimates
from KC and KCKF and the mixed estimates from (25.1) as
follows

2
i 1 j j oi j vi Ty
Pl = ZTAU[PZ—M—I +(X1}¢—1|k-1 _xk‘—llk—l)(x‘k’—llk—l ~Xlz‘—l|k-l) My

ot = 2 |

(25.3)
Step 2. Parallel Filtering

The Kalman estimators for KCKF(i=1) and KF(i=2)
Xt = @' Xl (25.1)
Pt = O Py (@)+Q' (25.2)
H = B_H&Q (253)

I, Xi=Xijuos

T} = HiBj), (Ho™+©' (25.4)
K} =P} (HO(@)™ (25.5)
o =2, ~Hy(Xjy, ) (25.6)
i = X KL (25.7)
i =1 =K HP (25.8)

where (25.3) is the Jacobian matrix of H} for the extended

form of measurement to transform Cartesian to polar
coordination. And for KCKF _
z=lz, Coyy I" (25.9)
= (2R a7 (25.10)
axk xi=xlk|k—l
Q= ©0 (25.11)
“lo @ '

Step 3. Model Probability Update
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Fig. 1. Trajectory of great circular maneuvering target
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Fig. 2. Position RMSE of (a) KCKF and (b) KCKF-IMM.

N, = — expl — 0.5(})"(T}) (k)
;]2n|l“,£|

- 2
n =—:;Nkc; where p=Y Nci

j=l

(26.1)

(26.2)

Step 4. Combination of Estimates

2
Xy =2 Xfy (27.1)
j=l

2
P = Zni[Pl:'k HX e = X)Xy = Xk|k)T] 21.2)
=1

4. SIMULATION RESULTS

The comparison between KCKF and KCKF-IMM is
performed assuming single sensor in polar coordination. The
target motion for this purpose is generated by mixed maneuvers
with two different types of constant acceleration(CA) motions.
For the first 100 sample periods, the CA maneuver satisfies the
constraint of constant speed like 2-V = 0. And for the last 100
samples, the CA maneuver does not satisfy the constraint like
4-v # 0. The initial position of target is assumed fixed altitude
with range 2236 (m) and for the onset of outbreak from KC is
initiated acceleration input 28.3 (mfsec?). Al filters in this
simulation have same process and measurement noise
covariances as Q=1 and © =1, respectively. And the
uncertainty of KC for KCKF is also selected as Q=1. The
sampling interval is 0.25(sec.) Figure 1 shows the target
position trajectory in Cartesian coordinate frame. As expected,
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Fig. 3. Velocity RMSE of (a) KCKF and (b) KCKF-IMM
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Fig 4. Acceleration RMSE of (a) KCKF and (b) KCKF-IMM
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Fig. 5. Model probabilities in KCKF-IMM

the KCKF results in track loss for the last half filtering process
according to the mismodeling. However, as we can see in
Figure 2, Figure 3 and Figure 4, KCKF-IMM adapts the model
matching by virtue of interacting model between the two model
KCKF and KF. Figure 5 shows model transition standing for
giving up about 90% of adherence of KC after last half periods.

5. CONCLUSIONS

An IMM approach consisting of a constant speed and
constant acceleration model is proposed to track a maneuvering
target. The additional KC which can be obtained from the
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nature of maneuver dynamics was employed as a
pseudomeasurement with Kalman filter literature. The
suitability of given KC was judged by the model likelihoodness
which is updated by measurement error residual and its
covariance.

IMM implementation for the single target with this
approach promised the flexibility of additional constraint as
previously mentioned. And this formulation can be applied for
the multi-KC or multi-sensor target tracking by joining the data
fusion or association which will be the next stage of this study.
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