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Abstract
Although numerous distributed database design models and solution algorithms have been
developed, very few have been validated. Validation is critical to the successful application of such
models to distributed database design. In this paper, we develop a simulation system for distributed
database design. We then analyze and validate an average response time model using simulation.

The simulation results demonstrate that the average response time model is reasonably accurate.
1. INTRODUCTION

With the emergence of commercial distributed database management systems [Richter, 1994, The,
1994], distributed database systems are becoming more common. Properly designed, distributed
databases can yield significant performance advantages over centralized systems for geographically
distributed organizations. However, the design of a distributed database is an extremely complex
process. Given a computer network consisting of nodes with given processing and storége
capacities, connected by links with given data transmission capacities, a distributed database design
must allocate data to nodes (possibly with redundancy) so that retrieval and update operations can be
efficiently carried out at run time. Inappropriate placement of data or poor choices of ddta access or
processing strategies can result in poor system performance [Edelstein, 1995a, 1995b, Ozsu and

Valduriez, 1991].

The determination of units of data to allocate (termed file fragments) and the placement of copies of
those units on nodes in the network is termed data allocation. The choice of when, where, and how
retrieval and processing operations are performed is termed operation allocation or distributed

query optimization. A concurrency control mechanism [Bernstein and Goodman, 1981] insures that

update operations are performed correctly and consistently. Having an efficient and effective



concurrency control mechanism is particularly important when data is allocated redundantly.

Collectively, operation allocation and concurrency control are termed operating sirategies.

Data allocation and operation allocation are interdependent problems [Apers, 1988]. The optimal set
of file fragments and their optimal allocation depend on how queries are processed (i.e., the
operation allocation). However, the optimal operation allocation depends on where file fragments
are located (i.e., the data allocation). Therefore, although operations are not actually allocated until
run-time, an ideal operation allocation strategy must be deg/eloped at design time to obtain an
effective distributed database design. The concurrency control mechanism is typically dependent

upon the selected distributed database management system.

Although numerous distributed database design models and solution algorithms have been developed
(e.g., Apers [1988], Blankinship et al. [1991], Cornell and Yu [1989], March and Rho [1995], Ram
and Narasimhan [1994], Rho [1995]), relatively few response time models have been developed
(e.g., Cornell and Yu [1989], Lee and Sheng [1992], Rho [1995]). Furthermore, very few
researchers have validated the performance (i.e., response time) of the solutions (i.e., distributed
database designs) obtained using their models. Ideally, a real distributed database system should be
used to validate the performance of distributed database designs. However, experiments with a real
system would be too costly and/or too difficult to control. Thus, simulation is the only vfable
alternative. In this paper, we develop a simulation system for distributed database design and validate

the response time model of Rho [1995] using simulation.

Although there have been many simulation studies of distributed database systems and database
systems in general, most prior work investigates the performance of concurrency control mechanisms
(e.g., Agrawal et al. [1987], Carey and Livny [1988], Ciciani et al. [1990], Huang, Hwang, and
Srivastava [1993], Thanos et al. [1988]). These simulation systems do not model comprehensive
operation allocation strategies such as those in Rho [1995]. Since our main objective is to
understand the performance of data and operation allocation strategies, the previous simulation
systems are not appropriate for the purposes of our study. Therefore, we develop a simulation

system that models the comprehensive operation allocation strategy of Rho [1995].

The average response time model developed in Rho [1995] and summarized in Appendix 1 includes



queueing delays in local database operations as well as those in network communication. They
assume M/M/1 queueing models and do not explicitly model the synchronization and possible
parallel processing of query steps. In this paper, we examine the effects of these limitations using
simulation [Kobayashi, 1978, Law and Kelton, 1991, Sauer and MacNair, 1983]. Our gdal is to gain
a preliminary understanding of the accuracy of their analytical model. The next section describes our
simulated distributed database system. The following section compares the simulation results with

the analytical results.
2, A SIMULATED DISTRIBUTED DATABASE SYSTEM

We first describe the distributed database system architecture on which our simulation system is
based. The following subsection describes query processing (or transaction) models of the system.
The physical queueing model underlying the system is described next. Finally, the implementation of
the simulation system is described. In the following discussion the terms query and fransaction are

used synonymously.
2.1 A Distributed Database System Model

A simplified distributed database system architecture (adapted from Jenq et al. [1988]) is shown in
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Figure 1. A Distributed Database System Architecture

Figure 1. It consists of two levels of server processes: Transaction Manager (TM) and Data



Manager (DM). TMs and DMs work cooperatively to service transactions submitted to the system.
A user application process submits a transaction to the system. A transaction {query) copsists of
multiple subtransactions (query steps), each of which must be sent to and executed at a local
database. A TM acts as a transaction coordinator. It sends each subtransaction to an appropriate
DM and synchronizes the execution of the transaction. A request to a remote DM is routed through

a remote TM. A DM manages the execution of subtransactions at a local database.

2.2 Transaction Models

There are two types of transactions: retrieval (read only) and update. A retrieval transaction consists
of a set of query steps or operations (e.g., message, select/project, join, semijoin), some of which can
be processed in parallel and some of which must be processed sequentially. Figure 2.a shows the
execution model for a two-join query when all four semijoins are performed. A rectangle represents
an operation. We define 6 operation types for retrieval transactions: selection/projection, join,
projection of semijoin, join of semijoin, message, and fragment transmission [Rho, 1995]. Note that
message and fragment transmission operations may not need to be performed if their previous and
following operations are performed at the same node. A circle represents a synchronization point.
At a synchronization point, all the previous operations must be finished before the next operation(s)
can begin. For example, the last join operation in Figure 2.a cannot begin until both the result of the
previous join operation and the result of the semijoin operation are transmitted to the node at which

it is performed.

Figure 2.b shows the execution model for an update query based on distributed two phase locking
where two copies of the affected fragment are allocated [Bernstein and Goodman. 1981]. We define

2 operation types for update queries: message and update.
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Figure 3 shows the physical queueing model of a node and its links to another node underlying the
simulation system. We assume a node consists of a single CPU and a single disk and is connected to
another node via two communication links (one for each direction). A synchronization wait center
(SW) is introduced to model the synchronization requirements of the transaction models described in

the previous subsection.

A transaction of a particular

type arrives at a particular

node based on its relative

Transaction~gy . frequency. We assume a
Result :l]]}é@ “I @ | Poisson transaction arrival

process (i.e., with negative

— I" @ exponential transaction

interarrival times). Once a

Link -
transaction (a set of

Figure 3. Physical Queueing Model operations with
synchronization
requirements) arrives, it enters the synchronization wait center (SW). Some of its operations can be
immediately put into queues. However, others must wait until other operations (i.e., their previous
subtransactions) are completed before they can be put into queues. An operation receives services
from CPUs, disk, and/or links depending on its type. Each operation has CPU, disk I/O, and/or
transmission requirements associated with it. They are calculated in the same way as presented in
Rho [1995]. The requests in CPU and disk queues are serviced using a round robin scheme with a
time slice discipline. Those in link queues are serviced using a first-come-first-served (FCFS)
discipline. The current model ignores queueing delays due to data contention (e.g., waiting for lock

release). This will be addressed in future research.
2.4 A Simulation System

The simulation system was developed using CSIM [Schwetman, 1986, 1988, 1991] based on the
model described above. Figure 4 shows the architecture of the simulation system. Each component

is briefly described below. 51
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Figure 4. Simulation System Architecture

Workload Cienerator: simulates the arrival of

transactions based on their relative frequencies.

Transaction Manager: models the execution of

transactions and ensures their synchronization hased
on the operation allocation produced by the uenetic
algorithm. It uses the services provided by the Data

Manager and the Network Manager.
Data Manger: models local database operations such
as selection/projection and join. It uses the services

provided by the Local Resource Manager.

Network Manager: models network transmission

operations such as message and fragment transmission. It uses the services provided by the Local

Resource Manager and the Network Resource Manager.

Local Resource Manager: models CPU processing and disk /0.

Network Resource Manager: models the use of communication links.

3. SIMULATION RESULTS

We simulated the set of solutions for the problems developed in Rho [1995]. The simulation results

are reported in Appendix 2 and summarized in Figure 5.

In Figure 5, simulated average response times are plotted against estimated average response time

using the analytical response time model presented in Rho [1995]. The analytical average response

time model estimated the simulated average response time with reasonable accuracy (R = 9684 | p

=.0000). The analytical model tended to slightly underestimate the simulated time as the analytical

average response time increased. This is somewhat unexpected because ignoring parallelism should

result in overestimation.



A closer examination revealed, however, that assuming an M/M/1 queueing model in estimating the
average delay in the queue should result in underestimation. The average queueing delay for an
M/G/1 queue increases as the variability of the service time increases even though the mean service
time stays the same [Law and Kelton, 1991]. Intuitively, this is because a highly variable:service
time random variable will have a greater chance of taking on a large value, which means the server
will be tied up for a long time, causing the queue to build up. It is likely that the variability of the
actual service time distribution in the sample problem is larger than that of an exponential service
time distribution with the same mean (recall that the problem has two types of transactions: retrieval,
which requires a large amount of processing time, and update, which requires a very small amount of
processing time). A larger vafiability should result in the underestimation of average response time,
especially for transactions with very small processing time requirements (i.e., update transactions).
In fact, further analysis of the underestimation cases revealed that the underestimation was mostly

due to the underestimation of update transaction response time. Although limited in scope, the
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Figure 5. Analytical vs. Simulated Average Response Time
results demonstrate that Rho and March’s [1995] analytical response time model is reasonably

accurate.



4. SUMMARY

In this paper, we presented a simulation system for distributed database design. We analyzed and
validated Rho’s [1995] average response time model using simulation. The simulation results
demonstrate that Rho’s average response time model is reasonably accurate. However, the results
must be interpreted with caution since simulated response time is another estimate of the true system
response time. Future work will enhance the simulation system to include data contention as well as
resource contention. More rigorous validation of response time models including Rho’s [1995] will

be performed.
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Appendix 1. Average Response Time Model [Rho, 1995]

D ) Reop () + Ry (k) + R (k)

Min Ry = -£
D fk)
k

where Rcom(k), Riotk), and Repy(k) are the times spent by query k in communication, disk /0. and CRU
respectively. These response time components arc summarized below:.

W(t,p)TL(t.p)N(k.m.t.p)  H(k.m.Lp)
RCO (k) +
: ZZZ( (UL(t.p))’ - UL(.p)TL(L.p)  UL(Lp)

where UL(t,p) is the capacity of the communication link from node  to node p (bytes per unit time). TL(L.p) =
TLAL,
S0 Hikm.t,p), W(tp) = Lp)
k m

Z f(k)z N(k.m.t.p)
k m

.and N(k.m.t.,p) is 1 if H(k.m.t.p) > (0 and it is 0 otherwisc.

H(k,m,t,p) is defined as follows:

For message steps of retrievals,

H(k,m,t,p) = LM if t = node(k) and p = node(ak.m))

H(k,m,t,p) =0 otherwise
where LM is the size of a message. node(k) is the origination node of query k. node(i) is the node at which filc
fragment i is located.

For join steps,

H(k,m,t,p) = Lo m) + Logem if t = node(a(k.m)) = node(b(k.m)) and p = node(k.m)
Hk,m,t,p) = Lagm if t = node(a(k.m)) and t = node(b(k.m)) and p = node(k. m)
H(k,m,t,p) = Logm) if t # node(a(k.m)) and t = node(b(k.m)) and p = node(k. m)
H(k,m,t,p)=0 otherwise.

where L; is the size of file fragment i (in characters). a(k.m) and b(k.m) arc the filc fragment rcferenced by step m of
query k, and node(k,m) is the node at which step m of query k is processed.

For a final step,

H(k,m,t,p) = Laxm if t = node(a(k,m)) and p = node(k)
H(k,m,t,p)=0 otherwise.

For send-message steps of updates,
H(k,m,t,p) =LM if t = node(k) and copy(a(k.m). p) = 1
Hk,m,t,p) =0 otherwise

where copy(i,t) is 1 if fragment 1 is stored at node t. and O otherwise.
For receive-message steps of updates,

H,m,t,p)=L" if copy(a(k.m). t) = 1 and p = node(k)
Hk,mtp)=0 otherwise.

1
Rio(k) = E z O -
(k) - (k. m.t) UIO(t) - TIO(t)

where UIO(t) is the disk I/O capacity at nodc t (number of disk 1/0°s per unit time) and TIO(1) =
Zf(k)z O(k,m,t) is the total number of disk 1/0’s at node t. O(k.m.t) is defined as follows:
k m



For selection and projection steps.
O(k.m.t) = Dy, if t = node(a(k.m))
Ok,mt)=0 otherwisc
where Dy is the number of disk 1/0s required 1o process step m ol query k at node L.

For join steps,

Ok, m,t) = Fagmy it t = node(k. m) and ¢ = node(a(k.m)) and t = node(b(k.m))
O(k.m,t) = Fimx il t # node(k. m) and t + node(a(k.m)) and t = node(b(k.m)
O(k.m.t} = Fagemy + Fuoemn if 1 = node(k. my and t - node(a(k.m)) and t = node(b(k.m))
O(k.m.t) = Dign if t = node(k.m) = node(a(k.m)) = node(b(k.m))

O(k,m,t) = Dy + Eciomn if { = node(k.m) = node(b(k.m)) and t = node(atk.m)
O(k.m,t) = Digye + Engeann il t = node(k. m) = node{a(k.m)) and ( = node(b(k.m)
O(k.m,t) = Digye + Eaeann + Bty i1 = node(k.my and « ~ node(ak.m)) and t # node(b(k.m))
Ok,mt)=0 othenvisc

where Famy is the number of additional disk accesses nceded at node ¢ in order to send a(k.m) from nodc t to another
node after having retrieved it and Eq uy is the number of disk access required to receive and storc a(k.m) at node t
(typically a file write and the creation of nceded indexes).

For final steps,

Ok,m,t) = Eqgcmx if t # node(a(k.m)) and ( = node(k)
Ok, m,t) = Fogemy if t = node(a(k.m)) and t # node(k)
Ok,m,t) =0 otherwisc.
For update requests,
O(k,m,t) = Dyy if copy(a(k,m). t) = 1
Ok, m,t)=0 otherwise
1

Repu(k) = D ) Ulk,m 1)

t

UCPU(t) - TCPU(t)
where UCPU(t) is the CPU capacity at node t (number of instructions per unit time) and TCPU() =
Zf (k)z O(k,m, 1) is the total number instructions at nodc t. U(k.m.t) is defined as follows:

k m

For message steps,

Uk,m,t) = S; if t = node(k) and t # node(a(k.m))
Uk,m,t) =R, if t # node(k) and t = node(a(k.m))
Uk,m,t) =0

where S, and R, are the expected CPU units required to send and receive a message.

For selection and projection steps,
Uk, m,t) = Wi if t = node(a(k.m))
Uk,m,t)=0 otherwise
where W, is the number of CPU units required to process step m of query k at node t

For join steps,

Uk,m,t) = F ygemn if t = node(k. m) and t = node(a(k.m)) and t # node(b(k.m))
Uk,m,t) = Fpaemy if t # node(k. m) and t = nodc(a(k.m)) and t = node(b(k.m))

Uk, m,t) = F ageat + Flodomn if t # node(k, m) and t = node(a(k.m)) and t = nodc(b(k.m))

Uk, m,t) = Wigne if t = node(k. m) = node(a(k,m)) = node(b(k,m))

Uk,m,t) = Wit + E agemut if t = node(k. m) = node(b(k.m)) and t # node(a(k.m))

Uk,m,t) = Wit + E’vgemt il t = node(k. m) = node(a(k.m)) and t # node(b(k.m))

Utk,m,t) = Wigne + E st + E ik if t = node(k. m) and t # node(a(k.m)) and ( # node(b(k.m))
Uk.m,t)=0 otherwisc

where F'yq my and E'ygmy are the number of CPU operations required to send and receive a(k.m) from and to nodc (.



respectively.

For final steps,

Uk,m,t) = E’q my if t # node(a(k.m)) and t = node(k)
Uk.m,t) = F acmn if t = node(a(k.m)) and t = nodc(k)
Utkkm,t)=0 otherwise.

For send-message steps of updates.
Uk.m.t) = Z copy(a(k.m). p) S, il t = node(k)

p#t
Utk.m,t) = R, if t = node(k) and copy(a(k.m). 1) = 1
Uk.m,t) =0 othcrwisc

For receive-message steps of updates.
Uk.m,t) = Z copy(a(k,m). p) R,if t = nodc(k)

p=t
Uk,m,t) =S, if t 2 nodc(k) and copy(a(k.m). ) = 1
Uk,m,t) =0 otherwisc
For update steps,
Uk,m,t) = Wiy if copy(a(k.m). 1) = 1
Uk,m,t) =0 otherwise

Appendix 2. Simulation Results

Average Response Time
Solution Analytic Simulation

1 8.118 8.900
2 7.987 7.426
3 7.726 6.934
4 6.605 7.652

5 6.708 7.083

6 6.024 5.390
7 7.317 7.191

8 6.948 6.834
9 6.983 6.126
10 6.482 6.216
11 6.681 6.138
12 5.581 5.054
13 12.114 13.677
14 12.725 13.742
15 11.956 12.290
16 12.013 13.511
17 11.643 12.977
18 11.501 13.975
19 10.850 10.160
20 10.321 11.446
21 11.028 10.580
22 10.168 10.194
23 11.259 12.092
24 9.812 9.318




