Efficient Weight Initialization Method
in Multi-Layer Perceptrons

Jaemin Han, Shijoong Sung, and Changho Hyun
College of Business Administration
Korea University

Abstract

Back-propagation is the most widely used algorithm for supervised learning
in multi-layer feed-forward networks. However, back-propagation is very slow in
convergence. In this paper, a new weight initialization method, called rough
map initialization, in multi-layer perceptrons is proposed. To overcome the
long convergence time, possibly due to the random initialization of the weights
of the existing multi-layer perceptrons, the rough map initialization method
initialize weights by utilizing relationship of input-output features with
singular value decomposition technique. The results of this initialization
procedure are compared to random initialization procedure In encoder problems
and xor problems. ’

1. Introduction

Artificial neural net models, as a brain metaphor of information
processing, have been studied for many years in the hope of achieving
human-1like performance in the fields of speech and image recognition (Vemuri,
1988). The basic idea of neural net came from the perceptron by Rosenblatt
(Rosenblatt, 1962). The perceptron is a feedforward network with one output
neuron that learns a separating hyperplane in a pattern space. n linear Fx
neurons feed forward to one threshold ocutput Fy neuron. However, the perceptron
only separates only linearly separable sets of patterns and perceptrons cannot
separate linearly inseparable pattern sets (Minsky and Papert, 1969). Most
interesting collections of pattern sets are linearly inseparable.

Ackley, Hinton, and Sejnowski proposed back-propagation algorithm in
multi-layer perceptron and solved linear inseparability problem. Currently,
back-propagation is the most widely used algorithm for supervised learning in
multi-layer feed-forward networks. The basic idea of the back-propagation
learning algorithm is the repeated application of the chain rule to compute the
influence of each weight in the network with respect to an arbitrary error
function (Rumelhart 1986).

—325 -

The total input, netpj, to units j is a linear function of the outputs,
opi, of the units that are connected to j and of the weights, wj, on these
connections

net ;= E‘:wj,o,,,- (1)

Units can be given biases by introducing an extra input to each unit which
always has a value of 1. The weight on this extra input is called the bias and
is equivalent to a threshold of the opposite sign. It can be treated just like
the other weights.

A unit has a real-valued output, opj, which is a non-linear function of its
total input

1

04 = fi(nety) = Tre ™

(2)

The aim is to find a set of weights that ensure that for each input vector
the output vector produced by the network is the same as or sufficiently close
to the desired output vector. If there is a fixed, finite set of input-output
cases, the total error in the performance of the network with a particular set
of weights can be computed by comparing the actual and desired output vectors
for every case. The total error, E, is defined as

EI,:_%‘Zj(tpj"Opj)z (3)

where tpy is the desired output, and opj is the computed output.

To minimize E by gradient descent, back-propagation algorithm compute the
partial derivative of E with respect to each weight in the network. This is
simply the sum of the partial derivatives for each of the input-output cases.
For a given cases, the partial derivatives of the error with respect to each
weight are computed in two passes. In forward pass the units in each layer have
their states determined by the input they receive from units in lower layers
using equations (1) and (2). The backward pass propagates derivatives from the
top layer back to the bottom.

One way of using 8E/8w_is to change the weights after every input-output
case. The simplest version of gradient descent is to change each weight by an
amount proportional to the accumulated 9E/aw. To increase the learning speed,
Rumelhart included a momentum to modify the generalized delta rule.

— 326 —

dwi(n+1)=—1n(8,04) +adw;(n) (4)

Back-propagation start with small random weight to break symmetry. Original
back-propagation procedure uses a pure gradient-descent technique, a lot of
iterations are needed to get reasonable solutions. The choice of the learning
rate 1, which scales the derivative, and « have an important effect on the
time needed until convergence is reached. If it is set too small, too many
steps are needed to reach an acceptable solution: on the contrary large
learning rate will possibly lead to oscillation, preventing the error to fall
below a certain value. Many algorithms have been proposed so far to deal with
the above problem, e.g. by introducing a momentum term or doing some sort of
parameter adaptation during learning (Fahlman 1988, Riedmiller 1993). However,
the basic problem remains. The random initialization in multi-layer perceptrons
seems to prevent the learning algorithm producing output in a reasonable time.

2. The Weight Initialization Method

The brain is believed to have a strong ability of self-organization (AMARI,
1983). Its characteristics are modified according to the nature of the
environment from which signals are obtained, so that it adapts to the
information structures of the environment. And it is also believed that fine
structures of the brain are formed by self-organization to be compatible with
outer world. In this perspective, back-propagation algorithm resembles brain
mechanisms in that it modifies its weight according to the environment, even
though it uses supervised learning. However, a rough map is necessary before
self-organization takes place. An initial rough map seems to be developed by
another mechanism which takes place at an early stage of development.

The basic idea of the weight initialization method presented in this paper
is very simple. Back-propagation uses small random number usually from -1 to 1
as an initial weight. If somehow we can encode representatives of the examplar
patterns into the initial weight matrices, and use learning algorithms to fine
tuning, the convergence time can drop rapidly. We call this initial weights as
rough map initialization. This section describes one of the method that can be
used to derive rough map of the weights.

We can view the activations of Multi-layer perceptrons simply as doing
mappings between input and output patterns. That is, let X as input matrix, W
and W2 as weight matrices of Iﬁput-Hidden and Hidden-Output respectively and Y
as output matrix.

-327 -

How to Get Rough Structure of Weight Matrix

Define F[Y] and F'[Y]

Ayvn) Avid) ... A
FL YD =| Ry Ay ... Ao

f(yml) f(y.mz.) '--- ﬂynm)

f_l(yu) f-l(yu) f_l(yln)
F—l[Y] = f_l(J?m) f_l(yzz) f—l(yzn)

FUm) ' Om) oo ()
In 2 layer perceptions, the middle layer output H is computed
H=F XW] ., where(0<h;<l
And the output layer output Y is computed as follows.
Y=F HW]

If we know H, we can derive both W, W

(8)

Fl XW] =H
XW=F'[H)
WM=X"F'[H]
(9)
Fl HW] =Y
HW,=F7'[Y]
W=H'F Y]
Where, superscript + means pseudoinverse -~ a way of deciding on a

particular inverse when there is no normal way to decide. Note
psuedoinverse computes least squares solution to the problem.

Psuedoinverse can be computed by singular value decomposition.

H=Q,5Q]
The columns of Q(em are eigenvectors of HH?,
and the columns of Qy(,., are eigenvectors of H'H.

The r singular values on the diagonal of X, are

—328 —

that

the square roots of the nonzero eigenvalues of both HH” and H'H.
The pseudoinverse H is H' = Q.7 Q.

If the correct patterns of H are known a priori, then the problem can be
solved easily without weight update algorithm. However, the structure of H is
not known, so starting with randomized H matrix can be an alternative. With H
given as a starting point, we can compute the weights W, and Wz, and apply
learning algorithm.)

Even in this case, there is a significance between random initialization
and rough map initialization. In conventional random initialization method, the

initial weights, W], W, contributes nothing to producing correct outputs. So

the weight update algorithm takes care of the rest. In rough map initialization
method, the weights contributes some portion to produce correct outputs. And
the burden of weight update algorithm decreases.

We simulated two kinds of problems. One is encoder problem. In this case
when the number of hidden layer is sufficiently large and we apply rough map
initialization, there might be almost no need to adopt learning algorithm. When
the number of hidden units is very small, the rough map initialization might
have no competitive advantage over random initialization. In this case, in
constructing pseudoinvese we loose too much information. And the rough map
initialization might not will generally better than random initialization. The
other problem we tested is XOR. It can view as an instance of more general form
of parity problem. Parity is a very difficult problem to learn in multi-layer
perceptrons because the most similar patterns require different answers. In
this case, there might be no difference between random and rough map
initialization. But it is one of the extreme case. We think that most other
problems lies in between.

3. Simulation Results

3.1 Methodology

In the following experiments, learning time was measured as the average
number of epochs required until the task was learned in 20 different runs. An
epoch is defined as the period' in which every pattern of the training set is
presented once and the weights are updated according to errors. So when the
initial weights satisfy the task completion criterion, the epoch is calculated
as zero.

In each tests, we compared results by number of epochs from conventional

—329 -

random and rough map initialization. Although preprocessing is necessary in
rough map initialization, it actually takes almost no time. So comparison by
epoch has little bias. In simulating the problems, there were some problems
that fail to converge in a fixed number of iterations. So reporting average
number of epochs only is not enough to compare the results. Although Fahlman
allowed the program to restart a trial, with new random weights, whenever the
network has failed to converge after a certain number of epochs, deciding the
threshold of max iteration is subjective (Fahlman 1988). So in this paper, we
reported the number of failures and the average of successful trials.

The well working region of the learning parameters might be different
between random and rough initialization because of the difference of the range
in initial weights. So comparing the results with the same 7 and « may not

show the real differences. So we tested various combinations of learning rate
and moment ranging from 0.1 to 0.9 respectively, stepping 0.2. And the best
result was presented.

Learning is complete, if a binary criterion is reached. That is, the
activation of each unit in the output layer is smaller than 0.4 if its target
value is 0.0, and bigger than 0.6 if its target value is 1.0.

We compared whether random and rough map initialization is different with
conventional back-propagation algorithm. However, It should be remembered that
it is learning algorithm independent, so we can also apply other learning
algorithms, such as Quickprop and RPROP (Fahlman 1988, Riedmiller 1993).

3.2 The 10-5-10 Encoder Problem

The first problem to be described is the 10-5-10 Encoder task. The task is
to learn an auto-assocation between 10 binary input and output patterns. The
network consists of 10 neurons in both the input and the output layer, and a
hidden layer of 5 neurons. [Table 1] shows the resuls obtained from the
simulations. We see the significance difference between random initialization
and rough map initialization. Rough map initialization is more than 8 times
faster than random initialiazations.

[Table 1] The 10-5-10 Encoder Problem

Init No.

Problem| \ooooi | M| @ [paiyea] MAX MIN | AVG S.D.
Jo-5-10 |- Random [.7 1.6 1 0 | 220 94 |144.35 | 33.01
Rough Map| .7 [.9 | 0 13 9 17.10 | 7.65

—330 —

3.3 The 12-n-12 Encoder Problem

The task of the 12-n-12 Encoder is to learn an auto-assocation of 12 input
and output patterns. The network consists of both 12 neurons in the input and
the output layer, and a hidden layer of n neurons. We set ‘n” from 3 to 12
neurons. With this experiment, we can see how the single changes in the number
of hidden units affects learning time.

Rough map initialization is much better than random initialization in all
cases. Even in the hard problem, that is when n is set to 3, rough map
initialization takes only a third of random initialization. And the differences
increases when n is increased. When n is greater than 9, we found lots of cases

required no training at all.

[Table 2] The 12-n-12 Encoder Problems

Init No.
Problem Method L a Failed MAX MIN AVG S.D.
12-3-12 Random | .9 | .5 0 1019 472 729.25 | 138.21
Rough Map| .9 | .9 2 1099 83 211,00 | 231.88
12-4-12 Random .9 | .5 0 354 153 272.60 51,23
Rough Map| .9 | .7 1 292 83 97.16 72.06
12-5-12 Random .9 1.3 0 328 125 207.95 55. 39
Rough Map| .9 | .9 0 170 9 28. 50 33.60
12-6-12 Random .9 1.3 0 225 93 167.00 35.67
Rough Map| .7 | .9 0 108 8 19, 00 21.22
12-7-12 Random .9 1.3 0 211 86 145, 60 34.71
Rough Map| .7 | .9 1 19 4 8.79 3.24
12-8-12 Random .9 1.1 0 204 81 126. 30 32.58
Rough Map!| .9 | .9 2 8 2 4.72 2.02
12-9-12 Random .7 1.3 0 239 90 122,25 34.52
Rough Map| .7 | .7 3 11 0 2.18 1.58
12-10-12 Random .5 1.9 0 251 100 140. 60 41.35
Rough Map| .9 | .9 2 2 0 0.33 0.67
12-11-12 Random 71 .1 0 177 87 133.10 27.83
Rough Map| .5 | .7 0 0 0 0.00 0.00
12-12-12 Random 7001 0 214 78 119.95 29, 64
Rough Map| .9 | .9 2 2 0 0.33 0.67

-331 -

3.4 XOR

The final problem is exclusive-or problem. When the number of input is n,
and our aim is to decide whether even or odd number of 1’s exists in the input
vectors, this problem can be an parity problem. In this problem, the results
are not so fine as encoder problem. But the results seem to be a promising one.

[Table 3] The XOR Problem

Init No.
Problems Method 1 a Failed MAX MIN AVG S.D.
XOR Random .7 .9 2 120 62 84.50 19.93
Rough Map| .9 | .9 6 109 12 32.36 24.63

4. Conclusions and Future Work

In this paper, we compared conventional random and rough map
initialization. The results seem to be a promising one. Further research is
needed in this direction,

The concept described in this paper can be used in weight update algorithm.
The objective of multi-layer perceptron is finding a set of weights that
minimize sum squared errors. The basic idea of utilizing input-output relations
can be encoperated in the learning algorithm. In this perspective, the
objective of the multi-layer perceptron can be finding a set of hidden layer
patterns that minimize sum squared errors. Currently we are working to this
direction.

In this paper, we randomized patterns of hidden layer. But by utilizing
input-output patterns, different weight initialization strategy can be pursued
using some kinds of clustering techniques.

References

Amari, S., "Field Theory of Self-Organizing Neural Nets,” IEEE Transaction on
Systems, Man, and Cybernetics, Vol. SMC-13, No. 5, September/October
1983.

Fahlman, S.E., "An Empirical Study of Learning Speed in Back-Propagation
Networks, " CMU-CS-88-162, September 1988.

Hinton, G.E., “"Connectionist Learning Procedures,” Artificial Intelligence, pp.

-332—

185-234, 1988.

Jones, W.P. and J. Hoskins, "Back-Propagation - A generalized delta learning
rule, ” BYTE, October 1987.

Lippmann, R.L., “An Introduction to Computing with Neural Nets,” IEEE ASSP
Magazine, pp. 4-22, April 1987,

Minsky, M. and S. Papert, Perceptrons, Cambridge, MA:MIT Press, 1969.

Riedmiller, M. and H. Braun, "RPROP - A Fast Adaptive Learning Algorithm,” to
appear in Proceedings of ISCIS VII, 1993.

Rumelhart, D.E., “Learning representations by back-propagating errors,” Nature,
323:533-536.

Rumelhart, D.E., G.E. Hinton, and R.J. Williams, “Learning Internal
Representations by Error Propagation,” PDP Vol. 1, pp 318-362, 1986.

Rosenblatt, F., Principles of neurodynamics, New york: Spartan, 1962.

Strang, G., Linear algebra and its application, 2nd ed., Academic press, 1986.

Vemuri, V., "Artificial Neural Networks: An Introduction,” IEEE, 1988.

—-333 -

