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Abstract

A neutral particle beam(NPB) aimed at the object and receive a small number of
neutron signals at the detector to estimate the mass of an object. Since there is
uncertainty about the location of the axis of the beam relative to the object, we could
have aiming errors which may lead to incorrect information about the object. Under the
two assumptions that neutral particle scattering distribution and aiming errors have a
circular normal distribution respectively, we have derived an exact probability
distribution of neutral particles. It becomes a Poisson-power function distribution. We
proved monotone likelihood ratio property of this distribution. This property can be
used to find a criteria for the hypothesis testing problem.

1. Introduction

A beam of suitable high energy neutral particles in space can be used to estimate
the density of an object. If the object dimensions are known, the beam becomes a
means of estimating the mass of an object (see Feller [5]). Thus the beam becomes a
mass discriminator. A method of discrimination proposed here is to use a neutral
particle beam(NPB) aimed at the object where the neutron signal is generated, and a
small number of neutron signals are counted at the detector. Beyer and Qualls [4]
showed that the return neutron particles from an object interrogation obeys Poisson
statistics.

The mean neutron signal M for the Poisson distribution is computed by the bistatic
radar formula:

\ = [I1] [ ]-K(E,B)-[Laz] (D

A
(RV20;)2 anr

where [ is the probe current in amperes divided by 1.602x1071 coulombs, T is the

2

dwell time in seconds, A; is the object area in m®, R is the probe to object distance
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in meters, Y20, is the beam half divergence angle, K(E,B) is the mean number of
neutrons leaked from the object per incident particle, E is the probe particle energy in
election volts, 8 is the scattering angle, A is the detector area in mz, £ is the
detector efficiency, and r is the object to detector distance in meters. Note that

K(E,0) depends on the mass of the object. A detailed description of this formula is
given in the report of the American Physical Society report [1].
Let

K(E,0)A,

—LEL and f(ES) = et (2)

S= (Rro,)?

where f(E,8) combines parameters specific to the object design. Note that the mean
signal in (1) becomes A = Sf/(2n).

2. Exact Neutron Counts Distribution in the Presence of Aiming Errors

We assume that the return neutron particles from an object interrogation during the
given dwell time obeys Poisson statistics. The interrogation requires the true value of
the parameters to compute the mean of the Poisson statistics. One source of errors in
measurement is aiming errors (or tracking and pointing errors) which is the uncertainty
about the location of the axis of the beam relative to the object. Wehner [8] studied
the aiming error distribution of NPB. In this paper we consider aiming errors of the
beam for an object interrogation and make the following two assumptions about aiming
erTors.

(i) The beam has a circular Gaussian distribution of intensity with standard
deviation 01. This distribution is on a plane perpendicular to the beam axis.

(ii) Aiming errors yield a circular Gaussian distribution of the beam axis relative to
the object center. The standard deviation of the distribution is 0.

Beckman and Johnson [3] give evidence from an experiment that assumption (i),
that the beam has a circular Gaussian distribution of intensity, is not correct. They

argue that the beam has a Pearson Type VI distribution of intensity. This distribution
is much heavier in the tails than is the Gaussian.

We wish to calculate the probability that exactly x neutron particles, x =0, 1, 2, ...,
are received by the single detector in presence of aiming errors. In this case the mean
return signal X is

A= (21) LSF(E) e (W WY@ md (3)
where S and f are defined in (2) and 0; is a standard deviation of the circular

Gaussian intensity distribution of the beam at the object, and (©1, ©2) are cotrdinates
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of points on beam cross section.
The probability of exactly x neutron particles being counted, under the assumption
of a Poisson distribution of counts and aiming errors, is then

_ _1__ o o Sy x . (0% 02%)/(2 052) d_@__ld@i
Pey = 5 [ [ e™Mze (4)

2n 022

where M is defined in (3) and 02 is a standard deviation of the circular Gaussian
aiming error distribution of the beam relative to the object. The factor 21 02% in the

denominator of the integrand of (4) is the normalizing factor of the (01, ©2)

distribution, and it comes from

® C (e a2 0D 2
e do1dez = 21 02°,
©2=-00 J@).~0

where we made successive changes of variables ©1 = rcos8, @2 = rsin8, and y = r°.

We average over the aiming error distribution in (4) to modify discrimination for this
uncertainty. In repeated sequential interrogation, (4) leads to a reasonable and correct
modification.

Put

= ke -(af+ed)/ (2 0,®) (5)

where k = (21) ' Sf(E,0) and it represents the mean return neutron counts without

aiming errors. Now substituting (5) into (4) and changing to polar codrdinates, we
obtain

. E
P(XIX) = %_ L e-ke kxe 201 e 2} _rdr

—0'%* (6)
Letting
t=ke ™ and 1 - (%;—)Z 0
we obtain
PGM) = — = 1(x+ 13k, (8)
where

1(vik) = f et ar

is the incomplete gamma function.

We have defined in (5) that k be the mean number of return neutron signals
counted with the assumption that no aiming errors are made in the measurement of the
parameters and that the beam is perfectly centered on the object. Consider the
probability distribution in (8) by P(x:k, L)
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P(x;k 1) = L J:e"'m’“"ldm

kix!
= '):—, Oe"'m" L (—Ilc—)' 0! lde

e G

where Eas represents expected value of ©, and © has a probability distribution
fle)= Lk te’, L >1, 0<0<k (9)

The distribution in (9) is called the power-function distribution. From the above
expression, the distribution we have derived is a special case of a compound Poisson
distribution where © = ke 2 has a power—function distribution, and @ is a mean of
the Poisson distribution. See Johnson and Kotz [6] for the definition of compound
Poisson distribution. Thus the probability distribution represented by (8) may be

reasonably called a Poisson-power function distribution.
The mean and variance of the Poisson-power function random variable, by an
elementary reasoning often used in Bayesian statistics, are

E(X) = Eo (E (X)) = Eo(0) = k{ —757)

and
Var(X) = EoVar(Xle)]+Vard E(XI0)]

Eu(0)+Vara(o)

{75r) ¥ 757 - (7 )2}

By using the same reasoning, we can find the moment generating function
corresponding to the Poisson-power function distribution. That is

Mx(t) = E(e®) = E(E(e™]0)) = Ea(e*“™), (10)
which gives
Mx(t) = M((L, £ +1, k(ef-1)),
where M is a Kummer’s function (see Abramowitz [2] p.504) and is defined by

ax (@)a2x? (a)nx”

Mlabx) = 1+ =57+ =00 * " "(b)and ¥

where (a)n = ala+1)a+2) -~ (a+n-1), and (a)e = 1. From the moment generating

function the moments of any order can easily be evaluated by the usual differentiation
procedure. Kim [7] studied and proved some properties such as unimodality, stochastical
ordering, computational formula, of this distribution.
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3. Monotone Likelihood Ratio Property

In this section we will show that the Poisson-power distribution has a monotone
likelihood ratio. First we need lemmas that are properties of the incomplete gamma
function.

Lemma 3.1. Let Y be the incomplete gamma function defined by

Y(vik) = j:t"'l e 'at.

Then 7Y(v+a+bit) Y(vit)-Y(v+a:t) Y(v+bit)>0 for all v>0, t>0, @>0, and b>0.
Proof. Writing this quantity as an integral, we have
L’K( VI VL veanl eboly ox oy g
J:J:x"(x"—yb) (o)™ e Y dxdy
fﬂo<.v<x<t)xa(xb_yb) (xy)""l e-(xiy)dxdy
ar b_ b v-1 _-(x+y)
+ (0<x<y<n™ (x"-y°) (xy)" " e dxdy
~ ff ¥y (x®-y®) ()" e dxdy

(0<y<x<t)
fﬁ0<y<x<t) (x*-y%) (x*-y") ()" e " dxdy > 0.

i

Lemma 3.2. The function f(t;v) = ve’t™ v(vit) is monotone decreasing from e' to

1 as 0<v — o and monotone increasing from 1 to ®© as 05t — ©,
Proof. First write, by a change of variable, that

1
fiewy = [vz 0Pz (11)
From (11) it is clear that f is increasing in ¢ and that lt'_ug f(t;v) = 1. Also one finds

by computation that
lim f(¢;v) = v-T(v) limt'e’ = o,
—00 +—>0

Second, by an integration by parts in (11), one obtains
1
) = 1+tfO 2 ey, (12)

Because z in (12) is less than 1, it is clear that f is decreasing in Vv, and by the

dominated convergence theorem, that the limit is 1 as v—® and is e’ as v—0.
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Lemma 3.3. The function g(¢,v) = v(v+1;¢)/7(v;t) is monotone increasing from 0
to t as 0<v — ©, and monotone increasing from 0 to v as 0<¢ — o,
Proof. First to show the monotone property of g in Vv, consider the ratio
g(tv+re) _ _y(v+e+lit) _ y(vie)

g(tv) Y(v+E ) Y(v+1;t)

The ratio is greater than 1 by Lemma 3.1. So g is monotone decreasing in v. Now
compute

e ey )
limg(¢,v) = lim 1
b S S (30

where function f is defined in Lemma 3.2. Then by Lemma 4.2,
. 1
1+tf0 2 g,

1+tL12v et(l—z)dz

v+l =&

and the limit as v—0 is 0. Second, to show the monotone property of g in t,
consider the derivative of g with respect to ¢

efy(vit) - y(v+1:p) e’
Yi(v;e)

g'(tv) =

Then

2 . ’,
1 (Vt'v’f{f_ft'v) = ty(vit) - 1(v+1:8)

14
L(t—y) y'ledy > 0.

Thus g is monotone increasing in t. Now

. o Tv+1) _ wlv)
fmeV) = 770y = vy TV

and

1

e *x'dx t‘”lfo e 2'dz

lirgg(t,v) = ltl_lg—"" = li_r}g 1 =0 .
fe'x x' ldx g tZL e % 2'dz

. (]
L

Theorem 3.1 The Poisson-power function distribution in (8) has a monotone
likelihood ratio; and the Neyman-Pearson test for the hypotheses of Ho @ k=t vs.
Hi . k=d, when d<t, is a left-tail test.
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Proof. From (8) the likelihood ratio of the Poisson—-power function distribution is

Plxid t) _ (_g_)" 1(x+ £ id)
P(x;t, L) t Y(x+ L ;t)

L(x) =

Now by Lemma 3.3, for d<t

L{x+1) _ y(v+l.:d) ; y(v+1:8)
L(x) T y(vid) Y(vit)
- £ldv)
a(tv) )

Thus L(x) is monotone decreasing function of x. It implies that the Neyman-Pearson
test for an object interrogation with aiming errors is a left-tail test.
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