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ABSTRACT

A general comprehensive theory is presented to describe underground flow and mass transport, using a
multicomponent multiphase approach. Two sets of comprehensive governing equations are derived considering
mass and force balances of chemical species over four phases (water, oil, air, and soil) in a schematic elemen-
tary volume. The first approach is based upon the solution of the multicomponent multiphase continuity and
momentum equation, which eliminates the necessity of capillary pressure-saturation relationship. The second
approach is based upon the modified Darcy's velocity, and capillary pressure-saturation. The resulting primary
unknown variables are saturation, pressure of each phase, and mass fraction of each component. Compact and
systematic notations of relevant variables and equations are introduced to facilitate the inclusion of complex mi-
gration and transformation processes, and variable spatial dimensions. It is shown that the former governing
equations for groundwater flow and pollutant migration can be obtained from the integrated transport equation
by parameter substitution. The resulting system of nonlinear governing and constitutive equations are solved
using a multidimensional finite element model described in a companion paper.

INTRODUCTION

Groundwater contamination proceeds through complicated physical, chemical and biological mecha-
nisms, which requires flow and pollutant transport to be studied simultaneously. Groundwater models have
evolved to simulate the problems from simple groundwater flow to composite multiphase flow. The enhanced
capability of models requires an increased number of parameters. The objectives of this study are: 1) to develop
an integrated model to explain several groundwater systems, ranging from simple saturated flow to composite
multiphase flow using multicomponent multiphase theory; and 2) to present a systematic expression of the
groundwater systems which is suitable for modeling and has reasonable parameter evaluation requirements.

MATHEMATICAL FORMULATION

1. Mass Balance Equation

The derivation of multicomponent multiphase flow theory started with the application of continuous par-
tial differential equations over the discontinuous subsurface domain using traditional averaging concepts in
continuum mechanics. All possible phases and migration patterns are shown in the localized problem domain
and detailed view of the representative elementary volume [Bear, 1979; Bachmat and Bear, 1986] depicted in
Figure 1. Averaged macroscopic balance equations of mass, momentum, heat, and energy were obtained from
microscopic balances by defining averaging parameters, such as volume fraction [Hassanizadeh and Gray,
1979a,b]. Celia et al. [1993] presented a multi-scale computational model to overcome the lengthscale problem
in the volume averaging concept. They suggested a hierarchic sequence with output from smaller-scale models
serving as input to larger-scale models. In this study, the representative elementary volume was expressed as a
schematic control volume to derive mass and force balance equations. As shown in Figure 2, the schematic
control volume is a multicomponent multiphase system expressed by the volumetric fraction of each phase and
by the mass fraction of each species.

A microscopic mass balance is represented in equation (1), considering convective, diffusive flux, and

generation rate of component i in ¢ phase.
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Where, CL is concentration, V 4 is microscopic velocity,D:,,,a is microscopic molecular diffusion tensor coef-

ficient, gi, is generation rate of species i in @ phase for recharge, discharge, radioactive decay, chemical and

biological reactions.
The microscopic convective flux is expanded to macroscopic convective and dispersive flux as follows:
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where, ¥ o is macroscopic velocity of the « phase, and D}w is mechanical dispersive coefficient tensor of spe-
cies i in the o phase.

Equilibrium interfacial mass transfers among the different @ phases can be summed to zero
[Corapcioglu and Baehr, 1987]. Macroscopic mass balance equation of species i in the & phase is expressed as
follows for nonequilibrium conditions :
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where, DL = (D;Mz + D:,,,a) is dispersive coefficient tensor, and IL is the interfacial mass transfer rate for mass

exchange through the interface by means of dissolution, sorption, volatilization, ion exchange, and diffusion.

The overall migration process of the four phases depends upon the migration process of each phase.
Thus, total migration of species i is summation of equation (3) over all phases. To include the effects of volu-
metric fraction, density, and mass fraction of each phase, equation (3) is multiplied by volumetric fraction. The
final form of multiphase mass balance equation of species i is as follows :

i
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where, 6,(=U,, /U = #5,,) is the volumetric fraction of the @ phase, 5, (U, /U, =v, 1(4) = 6, 1 ¢)is the
saturation of the a phase , U, is the volume of the @ phase, U is the schematic control volume, ¢ is the
aquifer porosity, pa(= My Ua) is the density of & phase, M, is the mass of the a phase, wi,(: Mfz /Ma)
is the mass fraction of species i in the @ phase , and ML is the mass of species i in the @ phase.

The concentration of species i over the schematic control volume, C', is expressed as follows :
i i /
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where, m, is the unit mass of the « phase over the schematic control volume.

2. Force Balance

Lin and Gray [1971] presented one of the earliest studies related to multiphase force balance. They de-
rived a steady state momentum equation for laminar flow in capillary tube in which head difference, capillary
pressure, and surface tension were included. The theoretical equations were verified against experimental tests
of capillary tubes. Hassanizadeh and Gray {1979a,1979b], Allen [1984], and Abriola [1984] have rigorously
derived the modified Darcy's velocity from the momentum equation. Kueper and Frind [1988] examined the
effects of density, viscosity, surface tension on interfacial immiscible displacements when reviewing immiscible
fingering, based upon a force balance of pressure, gravity force, viscous friction, and interfacial surface tension.
Gray and Hassanizadeh [1991a,b,1993] showed the paradox, if the modified Darcy's velocity is used in a
variably saturated region, which requires false negative water phase pressure in capillary-saturation relations.
To overcome the problem, they developed a multiphase momentum equation including interfacial dynamics
based on conservation of mass, momentum, and energy, and the second law of thermodynamics. Application of
their technique required experimental data to ascertain the constitutive coefficients. Beckie et al. {1993] pre-
sented a mixed formulation of the continuity and momentum equations for simple saturated groundwater flow,
and performed large-scale finite element simulation using a multigrid, accelerated domain decomposition tech-
nique. Considering all the studies mentioned above, one can solve the multiphase momentum equation or use
the modified Darcy's equation to describe a multiphase velocity problem.
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1) Solution of multiphase momentum equation
Applying the momentum balance to one species of each phase of the schematic elementary volume, mi-

croscopic multiphase momentum equation is presented as a form similar to the Navier-Stokes equation.

-y
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Where, p';, is the density of species i in the a phase, P‘; is pressure acting on the species i, and u,, is the dy~
namic viscosity of the « phase.
Including the interfacial momentum exchange, a macroscopic momentum equation is derived by the extension
of the density and pressure of each species to all species in each phase.
—
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Where, ns the is total number of species in the a phase, 7, is the pressure of the a phase, R, is the momen-
tum exchange in the form of an isotropic Stokes' drag force [Allen, 1984], which denotes the resistance to mo-
tion of the & fluid phase by a slowly moving or immovable soil particle, acting in a direction opposite to fluid
phase velocity.
Applying the constitutive concept for mobility tensor, the momentum exchange between the soil particle
and fluid phase is expressed as:
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where, M a(= Ko lu a) is the mobility tensor, k, is the effective permeability tensor, ¥, is the velocity of the
-
mobile solid phase, and v, is the velocity of the a fluid phase.

-
If viscous effects within each phase can be neglected, then the interfacial frictional force ;Nz v, becomes -Vr,
7 is the frictional stress. The interfacial frictional stress depends upon the surface tension, contact angle, and
interfacial surface area of the two phases.

We can solve the problem of multicomponent multiphase flow and transport using the continuity equa-
tion (4) and the momentum equation (7). The primary variables are pressure, velocity, saturation, and mass
fraction. The parameters are density, friction factor, mobility tensor, interfacial mass transfer rate and genera-
tion rate. The equation (4) and (7) should be arranged in terms of primary variables to solve, and because of the
momentum transfer term, a coupling scheme is required. This method does not require Darcy's velocity and
capillary pressure-saturation relationships. However, still several parameters such as the mobility tensor must
be evaluated experimentally.

2) Derivation of modified Darcy's velocity

1t is possible to neglect the inertia term of the momentum equation due to the slow velocity of fluid
phase. After neglecting the viscous effects within each phase and between phases, the momentum equation be-
comes :

N adling
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The velocity of the a phase in a deformable porous media becomes:
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where, k is the intrinsic permeability tensor, k,, is the relative permeability of the @ phase, g is the down-

-
ward vector of gravity force, and ¥y, is the modified Darcy's velocity.

Assuming the density of the water phase is spatially unchanged, the Darcy's velocity can be written as follows.
The pressure terms are expressed in equivalent water height
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where, ha(=Pa/(pwg)) is the fluid pressure head in equivaient water height, #,(= , + ¥(o, /0,,)) is the total

piezometric head in equivalent water height, X, (= Kk g + ( pwg) Iy a) is the fluid conductivity tensor of the
%
phase, and ; is the upward vector of the y direction. The fluid conductivity of g phase, X ?) is expressed as

k5= Kalinag) igin))-

3. Storage Capacity of Porous

The compressibility of porous media can be related to the movement of soil particle or solid species by
deriving the solid transport equation from the multicomponent multiphase transport equation [Abriola et al.,
1985a,b]. By solving this solid transport equation, the displacement of porous media and velocity of each soil
particle can be calculated at each nodal point or in each element. Thus, the multicomponent multiphase model
can be used for the problems of soil mechanics, such as land subsidence. The main difference from the tradi-
tional model of soil mechanics ( e.g., land consolidation ) is that the multicomponent multiphase model consid-
ers not only the intergranular stress or effective stress, but also the highly variant fluid pressure in the pore
space, which occurs in the consolidation problems in 2 multiphase domain.

Solid species exist only in the solid phase and have no dispersive movement. If the available constitu-
ent species are soil and adsorbed species, then ! 4 0 - 1. If the amount of adsorbed species is so small that it

can be neglected, )’ =1. Therefore, the transport equation of solid phase in multiphase domain becomes :
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Solving for the derivative, equation (12) becomes the continuity equation of property 6;(=1-¢) as follows :
Dp, [w, ( ")]
6, +p| —+V| 8, ¥, |{=0 13)
Dt a

Because the soil particles are incompressible, (dp;)/ (dr)=0. Thus, equation (13) becomes a consolidation equa-
tion describing the time rate of change of void fraction or the magnitude of consolidation as follows :

—
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The total stress loading is the summation of the effective stress and the pore pressure (0'= c +P). The time de-
rivative of porosity can be expanded with respect to fluid pressure and total stress.
# 3 ¥ Aok
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If there is no change of total stress or overburden load, and the compressibility of the porosity by pressure head
is defined as ¢, = () /(auﬂ), then solid transport equation is expressed in terms of compressible porosity,
phase head, and solid velocity.

3 dxﬂ -3
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The compressibility ¢4 is obtained experimentally from the constitutive equation. The fluid pressure hg is
computed from the whole multicomponent multiphase system. The velocity of the solid phase and the time rate
change of porosity are computed from equation (16). For an clastic soil matrix, the parameter ¢4 is constant;
for a nonelastic soil, it is dependent upon pressure and properties of soil matrix, and the system becomes highly
nonlinear. For contaminant migration problems, the elastic deformation assumption is usually accepted.
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¥ is incorporated into the fluid equation by specific storativity S,g as follows :

S = 95+ ¥ag an
where, 4~ (&4)/(a48)) is the compressibility of the porosity by the  pressurc head, ag(= (da)/ (padhg) ) is the
" compressibility of the @ phase by the g pressure head, and S5 is the specific storativity of the porous matrix
and fluid. a5 and ¢4 always have negative values.
To combine the storage capacity of the porous media into the governing equation, the time derivative of mass
balnnceequationisexpandedas;'ollows
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Theﬁrsttemofethon(m)descnbesdwstomgecapamtyofthegwensystem The density of the liquid
mixture is a function of temperature, pressure and concentration. The model is restricted to isothermal cases.

By assuming isothermal conditions and neglecting the density change due to concentration, the storage capacity
of the system can be expressed as follows :
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4. Integrated Transport Equation

By separating the solid phase from the time derivative, including the Darcy and solid velocity, and storage
capacity of groundwater system, the integrated transport equation is expressed as follows :
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The second term of the time derivative is the saturation change which depends upon the convective flux and
capillary pressure. The expansion of this term can be implemented in one of two ways, depending upon condi-
tions.

The first case, often called a Buckley-Leverett problem [ Buckley and Leverett, 1942 ], occurs when
the dominant driving force of the system is the convective flux of the fluid phase, as found in oil recovery
problems. In this case, even though there is no capillary pressure, the saturation is changed by the flux of each
phase, and the saturation can not be expanded with respect to the capillary pressure. The saturation becomes a
primary variable of the system which should be solved simultaneously with the pressure.

The second case occurs when the dominant driving force is the pressure difference of each fluid phase.
This condition typically occurs during contaminant migration in a groundwater basin. The time derivative of
saturation can be expanded with respect to the capillary pressure, and simultaneous solution of the equation
about the saturation term is not required. This assures convergence of the nonlinearity and short computation
time. The saturation and its derivative are determined by the constitutive relation of the saturation and capillary
pressure. Even when there is no actual capillary phenomena in the regions where there is only one phase, a
hypothetical saturation derivative is required to avoid a singularity in the system of equations. This hypotheti-
cal value does not precisely match a real field problem and increases parameter requirements. The governing
equation of convective dominant system is expressed as follows :
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In the capillary dominant system, the governing equation becomes :
3(3 Bp\a |, AQ-Pesv
b \%g Tg | AP
GEI[ ﬂEI[Pﬂ‘Jﬁs pSpat ‘Pﬂ"‘% a.a] 2 tWaSay ]+ a
3 4 ’

- l(V(p,,wLK.,(Vh,, + :—"7))+ vw,,vf,vw,wi,»)— V- o)+ E(BUgr el @)

As we can see in equations (21) and (22), the primary variables are pressure head, mass fraction and
saturation. Even in the second case, there are at least two sets of primary variables. To solve for these primary
variables we need additional constitutive equations, as well as boundary and initial conditions for each variable.
In the case of the saturation variable, the resulting governing equation will be of the hyperbolic type with re-
spect to saturation, and the characteristic method will produce the best result [Huyakorn and Pinder, 1983].
Alternatively, one of the upstream weighted finite difference, finite ¢lement, Eulerian-Lagrangian methods can
be used [ Kim and Stenstrom, this issue]. The principal parameters required to solve the governing equation
are p,(a phase density), Sg, (storage coefficient), x, (fluid conductivity), D), (dispersion coefficient of spe-
ciesiin a phase), liz (interfacial mass transfer rate of species i) , and gﬂ, (internal production rate ). Some of
the evaluation techniques for several of these parameters mentioned here, detailed review of parameter studies
will be implemented in the companion paper {Kim et al., 1994].

Saturation and relative permeability are computed from the effective saturation of each phase. The ef-
fective saturation is calculated from the constitutive relation between the saturation and capillary pressure
[Parker et al., 1987]. The relative permeability of each phase is defined from the effective saturation.

The dispersive flux is caused by the microscopic velocity fluctuation, as well as chemical concentration
gradient. In the derivation of macroscopically averaged transport equation, the character of dispersive flux ap-
pears as the difference between the microscopic species phase velocity. The dispersion coefficient has the  di-
rectional property of the velocity of each phase and can be different for each species. The traditional formula-
tion of dispersive coefficient tensor [Bear, 1979; Voss, 1984] was expanded for this species dependency [Kim,
1989]. Although studies have been implemented for the dispersive coefficient, no generally accepted procedure
exists, due to the problems of the tortuosity of the geometry, evaluation of the microscopic phase velocity, and
scale effect of heterogeneous porous media. The only method used heretofore relies on soil sample tests and the
tracer tests. These results can be combined with parameter estimation techniques using deterministic or sto-
chastic models. Often only approximate results can be obtained, and additional research is required to better
estimate this parameter.

The mass fraction of the species i in the & phase is computed by w‘a-w/’gxﬂ‘“ﬂforknown mass fraction of
the species i in the  phase (w;,). Equilibrium constant of the species i between the @ and g phases is ex-
pressed as H’aﬂ. In the case of trichloroethylene, the solubility of TCE into water phase is approximately 1100
mg/L, which is the maximum possible mass fraction of TCE in water phase. The partition coefficient of disso-
lution is #3,, =wd/w$. Assuming no water species in oil phase (w] =1), mass dissolution constant becomes
HS, =11x1073,

Henry's law is applied to express the equilibrium rate of volatilization of volatile species in the liquid
phase, which is defined as the ratio of the partial pressure of species in gas phase to concentration of species in
liquid phase, expressed as H3, = P, /S5, =10* atm/ (mole /en®). Here, P, is vapor pressure of TCE in the air
phase (= 0.0837 atm), 52 is the solubility limit of TCE in the water phase (= 0.0837x 10 mole /am®), and
P:p 1 Py =m | my x28.9/1314, where 28.9, 131.4-are molecular weights of air and TCE phase. Thus,
w9 =0.0837x1314/28.9=0.38,

Sorption process depends upon the solute, sorbent, solution condition ( pH, temperature, ionic strength,
specific species, organic and inorganic solute, colloids, efc. ), and time. The partition coefficient of sorption is
expressed as H°, =w?/wS,. Sorption is often correlated with the organic carbon of soil, for organic species, as
expressed in H2, = fo. x H,c. Here £, is fraction of organic carbon measured from field data, H, is partition
coefficient based on organic carbon (logH . = a xlog(H,,,.S,BCF,-)+b) , H,, is octanol water partition coeffi-
cient, § is solubility, and BCF is bioconcentration factor [Karickhoff, 1984]. However, such correlations are
not generally applicable, and, in many cases, H2, is measured experimentally.
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Sorption is greatly influenced by the soil characteristics and the cosolvent, requiring the above equa-
tion to be modified. When sorptive reactions occur slowly, a kinetic model should be used. The sorption proc-
ess is especially important in the case of the solute transport (when the chemical substance is totally dissolved
in water phase). Traditionally, solvent "holdup” has been calculated through an empirical “retardation factor”,
which is calculated from the sorption coefficient. The velocity of the water flow is divided by the value of the
retardation factor. In saturated flow, retardation by the adsorption process is the cause for the difference be-
tween the advancing concentration and the groundwater fronts.

The chemical and biological reactions are consolidate with the whole process by internal production
rate g’a. The estimation of reaction rates is complicated by the effect of buffer catalysis, dissolved metals, dis-
solved organic materials and cosolvents. To quantify the reaction terms, the reaction orders must first be con-
firmed, and then the parameter values such as reaction rate constant , must be estimated.

In the subsurface domain, most of the microorganisms are attached to the surface of the solids making
the biofilm. So, sloughing and endogenouseffects should be considered for biological reactions. Monod-type
kinetics are most commonly used for the substrate decay with the modification for electron acceptor such as
oxygen.

CONCLUSIONS

In this study, the integrated groundwater model is developed from the mass and force balance of a
multicomponent multiphase system. The model encompasses the migration processes of convection, disper-
sion, dynamic interfacial mass transfer, and biochemical generation, and the forces of pressure, gravity, inter-
facial friction, and interfacial momentum transfer.

Conventional groundwater flow and contaminant transport equations were derived from the integrated trans-
port equation, and solved numerically in the companion paper {Kim and Stenstrom, this issue] by parameter
substitution. Parameter evaluation techniques were improved for the fluid conductivity tensor, storage coeffi-
cient, dispersion and partition coefficients to facilitate coding. The developed numerical model will be verified
for a broad range of system parameters and constitutive relations [Kim et al., 1994].
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