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ABSTRACT

In this paper, in order to obtain a disturbance decouplable as well as effective and disturbance suppressible

controller, a simultaneous assignment methodology

of the

left and right eigenstructure is proposed. The

biorthogonality property between the left and right modal matrices of a system as well as the relations between

the achievable right modal matrix and states selection matrices are used to develop the methodology. The

proposed concurrent eigenstructure assignment methodology guarantees that the desired eigenvalues are achieved

exactly and the desired left and right eigenvectors are assigned to the best possible(achievable)

eigenvectors in the least square sense, respectively.
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1. INTRODUCTION

The problem of eigenstructure assignment (simultaneous
assignment of eigenvalues and eigenvectors) is of great
importance in control theory and applications because the
stability and dynamic behavior of a linear multivariable
system are governed by the eigenstructure of the systemm In
general, the speed of response is determined by the assigned
eigenvalues whereas the shape of the response is furnished
by the assigned eigenvectors.

Eigenstructure assignment is an excellent method for
incorporating classical specifications on damping, settling time,
into a modern multivariable control
framework,[zJ and has been shown to be a useful tool for
flight design.m The

technique is used to design flight control laws for aircraft

and mode decoupling

control eigenstructure  assignment
with many control effectors, and the technique together with
suitable feedforward design can achieve static decoupling with
internal stability, which is an important requirement in many
flight control systems.m

The eigenstructure assignment algorithm can be divided into
two groups; the right eigenstructure (eigenvalues/right eigenv
the left eigenstructure
(eigenvalues/left eigenvectors) assignment, and their roles in a
Bl The right eigenstructure assignment is
widely used to solve mode decoupling problems, 678l
the vibration suppression of flexible
structures, and can be applied to disturbance decoupling
problems.m] On the other hand, the left eigenstructure is used
to define the controllability measure’® and also can be used

-ectors)  assignment  and
system are different.
to design

a controller for
[9.10]

sets of

. disturbance decouplability, disturbance suppressibility, eigenstructure assignment

to design an effective and disturbance suppressible

controller, '
Thus, in order to obtain a disturbance decouplable as well
the

appropriate assignment of a concurrent eigenstructure (that is,

as effective and disturbance suppressible controller,
simultaneous assignment of the left and right eigenstructure)
this paper, eigenstructure
assignment methodology, which is the generalized form of the
previously proposed one in Ref. 14, is suggested by using the
biorthogonality property between the left and right modal
matrices of a system as well as the relations between the

is required. In a concurrent

achievable night modal matrix and states selection matrices.
The whole procedure of the proposed methodology is simple
and provides more insight into the concurrent eigenstructure
assignment.

2. PROBLEM FORMULATION
Consider a linear time invariant multivariable controllable
system

8 = Ax(D+ Bult) + EAD (1)
= Ax(H+ Zlbkuk(z‘)-ﬁ- gelf,(t),
u(t) = Kx(D, (2)
z(#) = Dx(d, for j=1,2 3)
where i) xeR™ ueR™ feR",zieR”, and 2z,ER",
(m<N, and 7, +7rn<N) denote the state, control,

disturbance, and controlled output vectors, respectively. And
b, and e; are the k-th and /-th column vectors of the

control input matrix B and disturbance input matrix E,
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respectively; (i) A,B,E,K, and D; are real constant
matrices of appropriate dimensions; and (i) rank B=m=+0.

The responses of the state and the controlled output of the
given system due to control input #(#) and disturbance A?)
with zero initial conditions are represented using the modal
matrices of the system byua]

() = ¢f0,eA('_'){WTBu(r)+ T TERD)dr @

= gdb,e “{ gl( o by fole T e (Ddr+ Z;( ¢ ey fole L t)dl'},

t
() = D,-a)fo e 0 TR )+ T TEADdr, j=1,2 ()
where (i) O(¥) is_the right(left) modal matrix of the
closed-loop system, and A is the diagonal matrix of the
desired closed-loop eigenvalues; (i) A;, ¢é; and ¢; are the i
-th eigenvalue, right and left eigenvectors of the closed-loop
system, respectively, and u,(H is the k-th control input;
and Gii) D, inR™ " and D, in R™ " matrices are chosen
such that the controlled outputs 2z, (#) and =z,(#) may be

composed of hopefully disturbance decoupled states and
composed of (at most) the remaining states, respectively, by a

N

designer depending on the system considered, and are called
the orthogonal and parallel states selection matrices,
respectively.

Note, from Egs. (4), (5), that the response to the disturbance
A can be elimnated if the columns(¢;) of ¥ are
orthogonal to the columns( e;) of E. Thus, for suppressing
undesired disturbances, it is required that the left eigenvectors
of the system lie in the space orthogonal to the columns of
E. Note also that the control efforts are -effectively
transferred (that is,” the desired maneuver is achieved with
small control efforts), if the left eigenvectors are parallel to
the columns( ,) of B. Therefore, for both effective control
and disturbance suppression, it is required that the left
eigenvectors of the system lie simultaneously in the space
orthogonal to the columns of E and parallel to the columns
of B, at least, in the least square sense. Then, the
corresponding system can be manipulated with small control
efforts without being disturbed by the disturbance input.

On the other hand, the system is said to be disturbance
decoupled relative to the pair A -), z(-) if, for each
initial state, the controlled output z,(#, =0, is the same
for every A -). Thus, disturbance decoupling simply means
that the forced response

z,(D= Dlwfote’“'_') ¥ TBu(r)+ ¥ TEAD dr=0 (6)

for all A -) and 20" That is, from Eq.(6), if the right
modal matrix @ resides in the subspace of the kernel of the
orthogonal states selection matrix D;, the system
(Egs.(1),(6)) is disturbance decoupled. Thus, for solving

disturbance decoupling problems, the appropriate assignment
of the right eigenstructure of a system is required.
Meanwhile, for the r,-states of 2,(#) determined by D,,
the columns of the right modal matrix @ are required to be
parallel to the rows of the parallel states selection matrix D,
in order to preserve the control effectiveness and disturbance
suppressibility of the controller obtained by the appropriate
assignment of the left eigenstructure of the system.
Otherwise, that is, if the columns of @ are designed not to
be parallel to the rows of D,, the control efforts may not be
effectively transferred to the controlled output z,(#), even

though the columns of ¥ are designed to be paraliel to the
columns of B for maximum control efforts transferting.

In order to obtain a disturbance decouplable as well as
effective and disturbance suppressible controller, the left and
right eigenstructure should be assigned to the appropriate
ones simultaneously. Thus, the objective of this paper is to
find a simultaneous eigenstructure assignment scheme to
obtain such a controller.

3. HGENSTRUCTURE ASSIGNMENT BY STATE FEEDBACK
Consider Eq.(1) in the previous section. If state
feedback(Eq.(2)) is applied to Eq.(1), the closed-loop system
becomes
x(8)=(A+ BK)x(d) + EAD. N

Let A={A,,-.Ax} be a self-conjugate set of distinct
complex numbers. Then, the right and left eigenvalue
problems for the above closed-loop system can be defined hy

(A+BK—Adye; = 0 8
(A+BK—Adp "¢ = 0 )
where Iy 1s an (NXN) identity matrix. For the case that
the system has repeated eigenvalues, the eigenvalue problem
can be easily generalized.

Each problem of the right and left eigenstructure assignment
is then to choose the feedback gain matrix K such that the
required conditions for the eigenvalues and eigenvectors are
satisfied, and therefore may be considered as inverse
eigenvalue problem.

The right( @) and left( ¥) modal matrices are defined as
follows:

O=[d.¢2bi-.0na). ¥=[¢. ¢z ¢, ¢l

In the following, the superscript (-)° denotes the
conjugate of a given complex vector or scalar (- ).

As mentioned in the previous sections, for solving
disturbance or mode decoupling problems using eigenstructure
assignment scheme, the appropriate assignment of the right
eigenstructure of a system is required.

To present the well-known right eigenstructure assignment
scheme, we define
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S.=[Ady—A | B, R;=

N,
M x,]
where the columns of the matrix R, form a basis for the

null space of S, . For the case that rank B=m, it can be

shown that the columns of N, are linearly independent.“sl

The. following theorem gives necessary and sufficient
conditions for the existence of K which yields the prescribed
right eigenstructure.

Theorem 31°

Let {A;4;--,A5} be a self-conjugate set of distinct

complex numbers. There exists a real (mxN) matrix K
such that (A+BK)¢,= A4, i=1,2,--,N if and only if, for
each 7, 1) ¢, é,---.¢n are a linearly independent set in C,
the space of complex N-vectors, 2) ¢;=¢; when A= A3,
3) é,= span N,. Also, if K exists and rank B= m, then

K is unique, and is computed by using the obtained
submatrices N, and M.

The left eigenstructure assignment scheme plays an
important role in designing an effective and disturbance
suppressible controller. Choi et o™ found that a left
eigenstructure assignment scheme by state feedback using
Theorem 3.1 cannot be directly applied to get the desired left
eigenstructure, and thus proposed a novel left eigenstructure
assignment scheme wusing the biorthogonality —property
between the right and left modal matrices of a system.
The proposed left eigenstructure assignment scheme makes
it possible to achieve the desired closed-loop left
eigenstructure exactly, provided the desired left eigenvectors
reside in the achievable subspace. In case the desired left
eigenvectors do not reside in the achievable subspace, the
closed-loop eigenvalues are achieved exactly and the left
eigenvectors are assigned to the best possible set of
eigenvectors in the least square sense. The details of the
scheme are reported in Ref. 14.
4. RIGHT/LEFT EIGENSTRUCTURE ASSIGNMENT
METHODOLOGY
The objective of this section is to find a solution for the
simultaneous eigenstructure assignment in the least square
sense to overcome the inherent conflicting nature of each
eigenstructure. If the following three conditions are satisfied
simultaneously, the desired left and right modal matrices are
achieved in the least square sense guaranteeing the exact
assignment of the desired eigenvalues.
o[ (¥ 0% P-1)] = 0, ¢l
@Dy - O P = 0, an
a3(D," K- Q%P S 0 (12)
where ¢; are weighting factors corresponding to each
0<¢;<1 (i=1,2,3), g"q.:l, and

PeC™ N is the coefficient matrix to be determined.

I

condition and

The first condition(Eq.(10)) denotes the biorthogonality
property between the desired left modal matrix (#%) Tand the
achievable right modal matrix @%,.P, and can be used to
design the left eigenstructure of a system. The second
condition(Eq.(11)) denotes the orthogonality property between
D, and O%,P for disturbance decoupling. By adding the
second condition to the first one, the corrupted disturbances
in the states selected by Di(i.e., 2,(£)) are decoupled in the
least square sense. The third condition(Eq.(12)) denotes the
parallel condition between D, and @%,P, where the
matrices K, and S=[s;8.s,] are a linear combination
coefficient matrix and a state selection matrix, respectively.
The element vector s; is adopted to select any column vector
of the matrix @%,P, and is equal to the transpose of the i
~th row vector of the parallel states selection matrix D,.
Now, our objective is to find the feedback gain matrix K
which yields ¥* and @“ with exact desired eigenvalues,
satisfying the imposed three conditions simultaneously in the
least square sense, through choosing P and % s» which are
the elements of the matrix XK.
For convenience, we vectorize the elements of the coefficient
matrix P in Eg(10)(See Ref. 14) as
p=lolps 05 o a1 T (13)
Assume, as an illustrative example, that all the three
conditions are imposed only on the i-th achievable right
eigenvector simultaneously, and only the first two conditions
are imposed for the remaining achievable right eigenvectors.
Then the stacked augmented coefficient vector 3 aug
including the linear combination coefficients % 5 1s formed as
Dag= [0 07, %o, 72,1;“. Rig b dy 1T (14)
=b'as
The elements of the i-th augmented coefficient vector
P'ag are used for determining the i-th achievable right
eigenvector satisfying all the imposed conditions. The
dimension and elements of the vector 3 ,,, are determined
by the imposed conditions on each achievable right
eigenvector.
Now, the imposed three conditions (Egs.(10)-(12)) can be
represented by the following compact form.
TP ag=7 (15)

~ mN+ N+r)+
where the vectors B ,,,=C™ ' 2eR™Frn g

(MN+ 1)+ r) ¥ (mN+ 7)) . . . .
TeC RN ) e given in this special case,

respectively, by
Pae = (00080 2a B Rip By 0817, (16)

N+r N+r, Ntr+r N+n
7= _g,0--0 0,00~ 0-0_g0-0- 004,17, a7
1st 2nd ith Ntk

-620-



0 Q%2 |0‘v/y:
7=[ oo, ) 7= @&Nhlon~+
B Ny 1 X

for /=1, N, I#1i, for /=i,

where X denotes the following matrix
- (I:il re ]
0 (N—r)rn th‘

P e i given by P ag=T 7, and from Egs.(10-(12), the
achievable right and left eigenvectors are given in the least
square sense.

In general cases, all the three conditions are imposed on the
achievable (N—1) right eigenvectors of a system with
repeated eigenvalues, and the dimensions of the vectors

b wg, 7, and the matrix T are extended appropriately.

the imposed three conditions simultaneously in the
least square sense

K=wo* .

5. CONCLUSIONS

In this paper, a concurrent eigenstructure assignment
From Eq(15), the stacked augmented coefficient vector methodology for linear systems has been proposed to obtain

an effective, disturbance suppressible and also decouplable
controller by using the biorthogonality property between the
left and right modal matrices of a system as well as the
relations between the achievable right modal matrix and
<tates selection matrices. The proposed simultaneous right/left
eigenstructure assignment methodology guarantees that the
desired eigenvalues are achieved exactly and the desired left

and right eigenvectors are assigned to the best
Remember that the objective of this study is to find the possible(achievable) set of eigenvectors in the least square
state feedback gain matrix K satisfying the imposed three sense.

conditions in the least square sense. The following algorithm
gives such a gain matrix. The algorithm guarantees that the
desired eigenvalues are achieved exactly and the desired right
and left eigenvectors are achieved in the least square sense.
Algorithm:

-Step  1: Determine the desired eigenvalues (4;),
corresponding mode’s desired left eigenvectors (¢9), the
orthogonal states selection matrix Dy, the parallel states

selection matrix D,, and weighting factors ¢,. (1=1,2,3)

Nj,
MA,]

where the columns of the matrix R, form a basis

- Step 2: Find the following matrices

S;=ldy—A | Bl, R,=

for the null space of S;,.

-Step 3 Construct the augmented achievable right
modal matrix 0%, .

-Step 4 Calculate the stacked augmented coefficient
Vector B aug satisfying the three conditions
described in this section in the least square sense.

- Step 5 Form the achievable right eigenvectors

¢i=Nibi,
and construct the achievable right modal matrix @“.

-Step 6 Construct the achievable left modal matrix
¥¢ using the biorthogonality condition ( (¥%) To*)
=Jy) between the left and right modal matrices of
the given system.

-Step 7: Calculate vector chains and construct the
matrix W as follows:

wi=—Mupi, W={w,,wsy - w, -, wyl

-Step 8 Calculate the state feedback gain matrix
which yvields the achievable right( ®¢) and left( )
matrices with exact desired eigenvalues satisfying

-621-

L

o

~)

REFERENCES
Ly Jin, Chiang, L D, and Thop, J. S, “Eigenstructure Assignment by
Decentralized Feedback Control,  [EEE Transactions on Auwtormatic Control, Vol.
AC-38, No. 4, April 1993, pp. 587--5%4.
Sobel, K M, and Lallman, F. J, “Eigenstructure Assignment for the Control of
Highly  Augmented  Aircraft,” Journal  of  Guidance,  Control, and
Dynamics, Vol. 12, No. 3. 1989, mp. 318--324.
Sobel, K M, Shapiro, E. Y., and Andry, A N, Jr., "Eigenstructure Assignment.”
International Jourral of Control, Vol. 59, No. 1, 1994, pp. 13--37.
Sobel, K. M, and Shapiro, E. Y., *'A Design Methodology for Pitch Pointing Flight
Control Systems,”  Journal of Guidance, Control, and Dynamics, Vol. 8, No. 2,
1985, pp. 181--187.
Choi, J. W, Lee, J. G, Kim, Y. and Kang, T, "Left Eigenstructure Assignment:
A Generalized Lyapunov Equation Approach”  Proceedings o the First Asin
Control Conference, Tokyo, Japan, July 27-30, 194, pp. 21--24

. Andry, A N. Jr, Shapiro, E Y, and Chung, J. C, "‘Eigenstructure Assignment for

Linear Systems,” IEEE Transactions on Aerospace and Electronic Systems, Vol
AES-19, No. 5, 1983 pp. 711--723.
Sobel, K M, and Cloutier, J. R, “‘Eigenstructure Assignment for the Extended
Modium Range Air-to-Air Missile,” Journal of Guidance, Control, and Dynamics,
Vol. 15, No. 2, 1992, pp. 529--331.
Siouris, G. M., Lee, J. G. and Choi, J. W, “Design of a Modem Pitch Pointing
Control System” IEEE Transactions on Aerospace and Electronic Systems, Vol
AES-31, No. 2, April 19, pp. 730--738.
Lichst, B. S, and Garrard W. L, “Design of an Active Flutter Suppression
System,”  Jouna  Guidance, Control, and Dymmacs, Vol 9, No. 1,
1986, pp. 64--71.
Song, B-K, and Javasuriva, S, “'Active Vibration Control Using Eigenvector
Assignment for Mode Localization,”  Proceedings of the Ameriaan Control
Corference, San Francisco, California, June 1993, pp. 1020--1024.

. Wonham W. M., Linear Multivariable Control: a Geometric Approach, 2nd cd,,

Springer-Verlag, New York, 1979, pp. 86--92.
Kim Y, and Junkins, J. L., '"Measure of Controllability for Actuator Placement,”
Jourral of Guidance, Control, and Dyrarmics, Vol 14, No. 3, 1991, po. 8%--902
Choi, J. W, Lee, ] G, Kim, Y. and Kang, T, "Eigenstructurc Assignment
Considering Both  Modal  Controllability and  Suppressibility  Measures,”
Proceedings o the Ind SICE Annual Corference, Kanazawa, Japan, August
4-6, 193, pp. 1445--161.
Chol, J. W, Lee. ] G, Kim, Y, and Kang, T, "'Design of an Effective Controller
via Disturbance Accommodating Left Eigenstructure Assignment,”  Jourmal of
Guidance, Control, and Dynamics, Vol 18 No. 2, March-Aprl 19%, pp.
U7T--3B4 :
Junkins, J. L., and Kim, Y., Introduction to Dyramics and Control of Flexible
Structures, AIAA FEducation Serics, Amencan Institute of Aeronautics and
Astronautics, Inc, Washington D.C,, 198.



