Study of Corrosion-Induced Failure Mechanisms of Epoxy Coated Reinforcing Steel (Parts I and II)

  • Lee, Seung-kyoung (Dept. of Ocean Engineering, Florida Atlantic Univ., Boca Ration, FL33431)
  • Published : 1995.04.01

Abstract

Epoxy coated reinforcing steels (ECRs) were acquired from ten sources and coatings from each source were initially characterized in terms of defects, thickness, solvent extraction weight loss and hardness. Testing involved exposure in three aqueous solutions at elevated temperature (8$0^{\circ}C$) and in chloride-contaminated concrete slabs under outdoor exposure, It was found that the density and size of coating defects was the promary factor affecting ECR performance. The equivalent circuit analysis using electrochemical impedance spectroscopy (EIS) data indicated that the impedance response for well-performing ECR specimens showed no signs of active degradation at the interface although diffusional processes similar to those noted for poorly performing bars occurred here. Experimental results also indicated a relationship between corrosion behavior and bar source. Weight loss upon solvent extraction correlated with impedance reduction from hot water exposure. Coating defects during most of the tests, especially in high pH solutions containing chloride ions. ECRs with excessive coating defects, either initially present or ones which developed in service, performed poorly in every test category regardless of source. Forms of coating failure were extensive rusting at defects, blistering, wet adhesion loss, cathodic delamination, underfilm corrosion and coating cracks. These occurred sequentially or concurrently, depending on the condition of the ECR and nature of the environment

Keywords