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Abstract :

An incremental Total Lagrangian Formulation is implemented for the finite element analysis of
laminated composite pressure vessel with consideration of the material and geometric nonlinearities. For
large displacements/large rotations due to geometric nonlinearities, the incremental equations are derived
using a quadratic approximation for the increment of the reference vectors in terms of the nodal rotation
increments. This approach leads to a complete tangent stiffness matrix. For material nonlinearity, the
analysis is performed by using the piecewise linear method, taking account of the nonlinear shear stress-
strain relation. The results of numerical tests include the large deflection behavior of the selected composite
shell problem. When compared with the previous analysis, the results are in good agreement with them. As
a practical example, filament wound pressure vessel is analyzed with consideration of the geometrically and

materially nonlinearity. The numerical results agree fairly well with the existing experimental results.

INTRODUCTION

Laminated composite structures have become
increasingly popular in many engineering fields. This
is due to the high specific stiffness and the high
specific strength of composite structures. During the
past few years, considerable efforts have been made
to develop nonmlinear computing programs and to
predict the structural nonlinear phenomena with
sufficient accuracy. These developments are justified
by the need to consider extremely severe loading
conditions for safety requirements, and by the
important benefits resulting from weight saving in
industries like acronautics. In this paper, we first
concentrate on the geometrically nonlinear analysis.

During the last decade or so, a number of
finite element approaches have been proposed for
the geometrically nonlinear analysis of composite
shell structures [1-6]. In those papers, the element
displacement field of the shell element formulation is
linearized with respect to nodal rotations. This
restricts the magnitude of nodal rotations during the
large deformation process and necessitates very small
load increments to permit good convergence.
Therefore, it is necessary to develop the formulation
taking the large rotations under the large load
increments into consideration for the composite
structures.

In the development of an clement for
geometrically non-linear analysis, the consideration
of large rotations introduces additional difficulties
due to the non-vectorial nature of finite rotations.
Different formulations which show the effect of
finite rotation increment on the resulting stiffness
matrices have been presented by Surana [7], by Simo

and Vu Quoc [8] and by Dvorkin et al [9]. Dvorkin
et al [9] used a rotation matrix developed by
Argyris [10] for the finite rotation for curved beam
clements. This led to the introduction of various
additional geometric stiffness contributions, which
were found to be necessary in order to attain the
quadratic rate of convergence in Newton-Raphson
iterative schemes of solutions. In this study, we
extend Dvorkin's formulations in order to develop an
incremental Total Lagrangian Formulation for the
degenerated composite shell elements considering
large displacement and large rotation. Secondly, We
consider the material nonlinearity for the composite
shell elements.

The stress-strain behavior of the advanced
composite materials,especially graphite/epoxy, is
generally classified as linear-to- failure. However, the
shear stress-strain behavior of the unidirectional ply
shows significant nonlinearity. Hahn and Tsai [11]}
suggested the cubic spline function for modeling the
nonlinear inplane shear. Hu [12] showed that the
nonlinear inplane shear has significant influence on
the buckling and postbuckling  responses of
composite plates and shells , specially for those with
[45/—-45], lay up using the ABAQUS finite element

program. Uemura and Fukunaga [13] showed that the
nonlinear inplane shear gives significant effect on the
initial failure strength for the helically filament
wound cylinder composed of the graphite/epoxy. In
this study, the material nonlinearity using the cubic
spline function developed by Hahn and Tsai is taken
into account for the incremental Total Lagrangian
formulation,

the composite plate and shell examples were
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solved and compared with existing alternative
solutions to establish the validity of the present study.
As a practical example, the filament wound pressure
vessel is comsidered. The geometrically and
materially nonlinear behavior of the filament wound
chamber was studied by some authors [14-17].
Lemoine [14] analyzed the filament wound chamber
composed of the kevlar/epoxy and glass/epoxy by
using the axisymmetric solid element with effective
modulus. He found that the analyses based on the
small displacements and linear elasticity resulted in
the significant discrepancies between predicted and
test results. Jeusette et al [5] performed the analysis
of a spherical wound satellite and the composite head
of a rocket motor by using the isoparametric
axisymmetrical finite elements. Uemura et al [16]
performed the analysis of a rocket motor case
composed of the graphite /epoxy by using the
axisymmetrical shell element.

The objective of this study is to implement the
large rotation theory deveoped by Argyris to the
composite shell element with considration of the
materially nonlinearity and to analyze the filament
wound pressure vessel by using the degenerated
shell element with consideration of the geometrical
and material nonlinearity. This degenerated shell
element has the advantage of solving the problem of
the composite chamber with the hole in dome such as
the thrust reversal port on the motor case.

GEOMETRIC AND KINEMATIC
DESCRIPTIONS

2.1 Coordinate Reference Frames

Three different types of Cartesian reference
frames are defined here for convenience in
subsequent derivations as shown in Fig. 1.

The global coordinate system(x,y,z), with
its orthonormal base vectors ¢, (i =12,3), is used to
define the element geometry and its translational
displacement degrees of freedom.

The nodal coordinate system is constructed at
cach node, with associated unit basc vectors *v¥ (i =
1,23 ), where ‘v coincides with the nodal fiber.

During the incremental analysis, these orthogonal
unit vectors are continuously updated and used as a
moving basis for defining the "finite" rotational
degrees of freedom at the node. This system is
defined as follows:

ot e, x’v4

e

0k x X k

R

)

where the vectors °x}? and x5 are the nodal

coordinates of the top and bottom surface at node k
in the initial undeformed configuration as shown in
Fig. 1 where e, is the unit vector in the global v -
direction. if °v} is parallel to e, , we define

°v¥ = —e,. Finally, the unit vector vk s
perpendicular to the plane defined by v’ and Oy¥

The local lamina coordinate system
(x',y’,z') is a Cartesian coordinate system defined
at the sampling points wherein stresses and strains
are 1o be calculated. At any sampling point ( £,7)
on the lamina midsurface, an orthogonal set of local
coordinate axes (x’,y’,z’) is constructed. e, is the
normal unit vector and e , and e, are tangent to the
midsurface of lamina. This system is defined as
follows:

ox 9%
28 dn
2

€ = " 5! 5X " (a)

0"5 on
where
0% _(OX OY OZw ox _ 0% Oy 8% (p)
dE EFEJE dn ‘ondndn

To define the material directions in relation to the
local system of axes in a consistent manner, which is
a practical requirement for the analysis of anisotropic
structure such as the filament wound pressure vessel,
a definition of the e, and e, direction is adopted

as three options as follows:
L right-hand -rule rotation about the normal to
the shell surface ,measured from the projection of the

global i -axis,(i =x, y,z) onto the shell surface as
shown Fig. 2.
e, xe
e, =qT————— ., €, =€,Xe, 3)
Teoxe ]

2.2 Geometry and kinematics of deformation

The global position vector to an arbitrary point
in the shell element in the initial deformed
configuration can be defined in terms of the natural
coordinates as follows [18]:

x—ZN(én)xm“Z(ggk NG 'v;  “a)

°X, =-§-(l—§k Yx; +—2~(1+§k) x (4b)
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where Oi is the position vector of a point O on the
reference planc at nodal point k; ° 1s component of
a unit fiber vector; g, is shell—thlckncss at nodal
point k on the reference surface; N, (£, n7) are the

two-dimensional shape functions associated with
nodek; p, is the number of nodes per element. °x,,

and °x; arc the coordinates of the top and bottom

surface of the shell along each nodal fiber,
respectively; a parameter £, €[~1,]] which defines
the location of the reference surface. The shell
midsurface and the reference plane may not coincide
with each other as shown in Fig. 3. Moreover, they
need not be parallel with each other. This feature
provides a convenient mean to model a composite
shell with an internal ply delamitation, a shell with
stiffeners, or a skirt of the filament wound motor
case.

There are five DOF per node used to
parameterize the element configuration in the
shell space: three global translations ( u,v,w), and
two " fiber " rotations § and ¢ about axes v; and
vE. In the present incremental analysis, three
successive configurations, at time " o " ( initial ), "7
( current ) and "¢+ A¢" ( incremented ) arc

considered. Then, the total and incremental
displacement fields of the element can be expressed
as

'u=“ZNk(;m‘

A= }_—N(éﬂ)éﬁn“ i 4* C=8), NEmv-+¥) (5b)

Z(C 4 N, &MV (52)

_ otz 0= __ t+a=
u =% -°%,, du =%

(5¢)

Since the orthonormal system at node k rotates,

t—
— Xk

t k - lRK 0 k (6)

where (;RK is the rotation matrix corresponding to
node k at time t and is referred to the initial
configuration. To go from the configuration at time "
¢ " to the configuration at time "f+ A", the

orthogonal system at node k is only rotated.
Therefore,

t+A K t+AtRK! k

v3 = ¢ v3 (73)

Studying this rotation, Argyris [10] arrived at

2
R =1, %"Eﬁ@ = %%)- [(48) ()
where
46% =[ 46 + 46} + a6 |* (70)
0 —A0F A6
AQ* =| A6 0 - AGF (7d)
_AB: 40 0

Note that the A

around the global axes but are the components of the
matrix defined in Eq. (7d) , which characterized a
rotation around the rotation axis.

In a very elegant way, Argyris proved that Eq. (7b)
can be rewritten as

are not independent rotations

CARK = | 4 A6+ — (A@‘) '(AQ‘)’ +

Because the incremental rotations are finite, we keep
the linear and the quadratic terms in Eq. (8).
Substituting Eq. (8) into Eq. (73), we can write the
following

HAYE — Yy = AG' WV + %AQ‘ 46 W (92)
Eq. (9a) can be rewritten as vector forms.
o= ARV A A X, )

Since the incremental rotations Ae, and Af, in
the shell clement are given with respect to the nodal
coordinate frame ‘v* - 'v% —‘v% as shown in Fig.
1, the vector crossproduct in Eq. (9b) can be
effectively evaluated in nodal coordinate frame. In

this case, the vector A@" is defined as follows:
Agk = Aﬁk ‘vr (10)
Substituting Eq. (10) into Eq. (9b), we can obtain

to k
+Aa, v,

W= da - B, ()Y (D)

Substituting Eq. (11) into Eq. (5b), we can obtain
= Au, (12a)

20, YN8+ Co N[ e —45%2] (120

Au +

Nk(—%wa: +46‘;)‘v§) (120)

A ) =Z(§_2'§k)
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where A, is term obtained from considering only
the infinitesimal rotation increment and ~ 4u,, is the

extra term from considering the finite rotation
increment.

The updated vectors ““vi-"*vi—"%vi of
nodal coordinate system are obtained as follows:
"N = Vg XV g x M X (i=123)  (13a)
where
_sindd  1[sina6* /)T
2 8 T3 46 12y |’
46" = (4. + da,2) % (13b)

Substituting Eq. (10) into Eq. (13a) , we obtain the
updated nodal vectors at time " t + At " as follows:

V| [lead e ga [V
AT ARV Y | v,
V| e e B gl +BD)||Y,

(14)

FORMULATION OF THE
INCREMENTAL EQUATIONS OF
EQUILIBRIUM

In the geometrically nonlinear analysis Total
Lagrangian(T.L.) formulation has been considered.
In the T.L. formulation, all current static and
kinematic variables are referred to the initial
configuration before the deformation ( say at time
"0"). T.L. formulation includes all kinematic
nonlinear effects due to large displacement and
rotations. For the formulation, the local Cartesian
coordinate system is used.

3.1 Total Lagrangian Formulation ( T.L.)

In the Total Lagrangian formulation at time
t+ Atf, all variables are referred to the initial
configuration at time "0" and the governing equation
with incremental terms is

[., 48,6 4B, aV + |, 8,6 an,.0av a5
= CUSW | 1S54, AV

where “*2'SW is the external incremental virtual
work at the current load increment; AE,.,]., is the

incremental Green -Lagrange strain tensor which can
be divided into two parts so that

A, = &, + A7, (16a)

where

1 t. t
A:q ='i(4)uu +4:uﬁ' Holhy 4)“1(1 Hol; 41“0«3) (16b)

1
Ay = (A, Aguy,) (16¢)

and O‘Si,j, is the second Piola-KirchhofT stresses and

subscript 0 and superscript t given in front of the
stress symbols denote that the stresses at time t are
referred to the configuration at time 0. Incremental

second Piola-Kirchhoff stresses ASi,J., can be
expressed as
48, = :)Ci'j'k‘l'AEi'j' ~ Cipr deyy 17)

A matrix formulation of the incremental
equilibrium equation (15) is obtained by considering
each integral in Eq. (15) separately. Accordingly,

[ oy [iclfae) cave ] fosit) ]t 'av

(18a)
=-#sw-| {oaef'{is}av

where [;C’] is the stiffness matrix of the lamina
properties, which is defined as Eq. (30a).

(s8] = [180rs 18y 880y 4838y (180)

() =| .. 2,20, 20,20, (18
Sl Sl Sy, 1

[+S]=]S:l Sy, T Syl (18d)
Sl S, I 0

and 1 is the third order identity matrix and 0 is the
third order zero matrix. Finally, /4’ is a vector of

Cartesian derivatives defined by
(&) Han, AV, AW, 4%, .AY,.AW, A, .4V, AW, (19)
3.2 strain-displacement relationship

The incremental displacement derivatives with
respect to isoparametric coordinate can be obtained
from Eq. (12a) and given by

amj) | |N. NECQ NLG-O (4t
amjane=) N, NEC-Q NEE-§i45(20a)
o) | o Ne N |44
o) | |0 NACOM NECO (4t
Yoy 10 NECOM NLEOR (! (200)
am) "0 Ng&/  NE4 |4
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i 1
8:? ='_aklvri s gz: "_ak 21 s gz:

5 ~ak v3| (20c)
and Au, is the component of the incremental
displacement such as (4u 4v Aw) of a generic point

is the
component of the unit vectors (‘v} 'v} v} ) inthe
direction ; and at nodal point k.

on the shell element; (‘vt ,'vE Vi)

2!

The displacement derivatives at time ¢ with respect
to isoparametric coordinates can be given by

s N, NAED)
Fulon} =5 |N, N,2EL { : }(m
Jufag) ™ o

0 M-i |

To evaluate the local strain components, the
derivatives of w’,v’,w’ with respect to x’.y’,z’ are
obtained from the transformation as follows:

Axy.2) | duvw
658 ]{‘;y— e,

acnd | Axy.0
The linear incremental strain vectors in the local
coordinate system may be expressed as

{4} = {4} +A {4}

where /M’ is a vector of local Cartesian

derivatives defined by Eq. (19), and matrices H and
A are defined as

¢~

AV, W) _
Xy Z)

ge| @2)

(23a)

1 00000O0O0°GO0
0 6010000
H={0 1 01 00 0 OO0 (23b)
001000100
000001010
(™, 0 0 |
0 W', 0
A=|u",, ', O (23¢)
', 0 et
LN RWR

T .
sy =[aw,wews ] (1 =Xy ,2) (23d)

The vector of local Cartesian derivatives {Ai'} is
related to the incremental nodal displacement vector
using Eq. (20) and (22).

{43} = G{4U} (24a)

where {AU} is incremental nodal displacement
vector defined by

(A} =[ M, & W, 00, 48,. A8 A0, A0, 4T (24b)
and matrix G separates into

G=G, +G,(4a,48) (24c)

where G, is matrix obtained from considering only

the infinitesimal rotation  increment and
G, (4a,48) is the extra matrix from considering
the finite rotation increment and the function of
Aq, AP . Using Eq. (23a) and (24a), we can write
the linear incremental strain vectors as follows.

(4¢}  (B+B(@8))1+AG +G(P)) |{AU} (252)

where

B, = HG, . B,(42,48) =HG,(4a,48) (25b)

Substituting Eq. (24a), (25a) into Eq.(18a) and
retaining the linear terms only, we obtain the
following incremental equilibrium equation

(KK +K) (A ={ -] | B+AG [iis}'ev  (60)
in which
K=[ [ B+AG, [[:C] B+AG, |'av (26b)

K, = .[W G,’[:8]G, "av (26¢)

K, {40} = [, [ B.+AG, JT{;s} 'av (264

where K, is the diagonal matrix occurred due to the

effects of the nonlinear functions of rotations. The
diagonal terms in matrix K, have zero values for

the terms corresponding to the displacement degrees
of freedom, and they have value for the terms
corresponding to the rotational degrees of freedom.

3.3 Constitutive modeling of lamina.

To model the nonlincar in-plane shear
behavior as shown in Fig. 4, the nonlinear strain-
stress relation for a composite suggested by Hahn and
Tsai [11] is adopted in this study, which is given as
follows:
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E. 27

=(G1

LT

)SLT +as;,

where subscript L and T are coordinates parallel and
normal to the fibers of material coordinate system;
E, and S, denote the shcar component of the
Green-Lagrange strains and the second Piola-
Kirchhoff stresses, respectively, G,, is the initial
shear modulus and ¢ is the nonlinear parameter of
the material that has to be determined
experimentally. By taking the partial derivative of
Eq. (27) with respect to E,; , the tangent shear

modulus can be obtained as follows:
GLT = j;u' = ! (28a)
ur +3a S,
LT
— )
G, = ﬁEL{ = 1 (28b)
L +3a S},

Lg

where G, is the tangent shear modulus in the
(L-T) plane of material axis and G,, is the
tangent shear modulus in the (L -¢) plane in which
¢ is the normal axis to the (L — T) plane. Since the

stress analysis is performed by the incremental load
method, the incremental constitutive equations
referred to the material coordinate system of

unidirectional lamina within the time step
"t "> "t+ A" canbe expressed by

or % &.V 1

2 FTT g 9 0
As vy, vy [Aezz
I A S PP I . U5
As, b =11, vy, _ e, s (29)
As, 0 0 G 9 0 2Ae,

0 0 0 0 %G

where subscript m denotes the m-th particular
lamina and (k=3%) denote shear correction factor.
The components of matrix are considered to be
constant before initial failure and G and G, are

assumed as constant in a picce-wise increment.

For the evaluation of element stiffness, the
material matrix referring to material coordinates
must be transformed to the local coordinates system.
By transformation, we can obtain the incremental

stress-strain relations as follows:
{as}=[icfae} [iC]=T" QT (30a)

where  Q is the stiffness matrix defined in Eq. (29),
and

[ m? n’ mn 0 0

n’ m’ -mn 0 0

T=|-2mn 2mn m-n* 0 O
{(30b)

0 0 0 m n

0 0 0 -n m

m = cosd, n = siné

where ¢ is the fiber angle between the material
coordinate system and local coordinate system.

Since clement geometry and fiber directions
are independent of each other, the fiber angle 4 is
not constant within the element for the case of the
filament wound chamber. Therefore, by specifying
the O -angle at each nodal point of the element and
using the 2-D shape function N(&,77), one can

interpolate the @ -angle at the Gaussian point.

3.4 Layered Model

The integral indicated in K, K, and K, of
Eq. (26a) is evaluated numerically by Gauss
Quadrature formula. However, the elasticity matrix is
different from layer to layer and not a continuous
function of (. The integration is carried out by

splitting the limits through each layer. In order to
apply the known coefficients of the Gaussian
quadrature, the limits of integration should be from -
1 to 1. This is achieved by using a lavered approach
[19], wherein a mid-point rule integration scheme is
adopted for each layer. Layers of different thickness
can be employed, as well as different number of
layers per eclement. The specification of the layer
thickness in terms of the curvilinear coordinate, £,

p-rmits the variation of the layer thickness as the
shell thickness varies. The integration by using the
layered approach can be written as

[ Reyaav=[ [S Renc)deng) 4dedn Gla)

k-1 e

AL, = Z_hh.«_ Go=-1+ Y A +A§k Glb)
j=1

where h is  the total thickness of laminate in a

element ; h, is k—th layer thickness of laminate; N
is the total number of laminate in a element.

- 146 -



SOLUTION PROCEDURES
Once assembled, the linearized equations
above are utilized in the following incremental -
iterative full Newton-Raphson scheme [20] for the
solution of the incremental nodal displaccments in

the j—¢th iteration within the time step
"t""—)“t + At" :
( H’A:)K"' HA;K,, +t+A:) )(i—l) A]'(i) - t+AP_ t+4Fi—l) (32)

The displacement increment is used to next
displacement and nodal vetcor as follows:

U® = U 4+ 4U® (33)
W [read e e | [
R AT Y. SR
) et M Feadad] ™Y

Using Eq. (34), the incremental displacement
derivatives of Eq. (20a) and Eq(20b) and the
displacement derivatives of Eq.(21) are updated and
from that incremental displacement derivatives and
that displacement derivatives, the matrices of
B,A,G and the increment strains of Ae arc

updated. Finally, the stress is updated as follows:
t+4ts(i) — t+as(i41) +C( t+ms(0)) Ae(i) (35)

NUMERICAL TESTS
5.1. Geometrically nonlinear analysis involving
large rotations
Numerical tests were conducted to check the
ability of the present formulation to allow large
displacements and large rotations.

5.1.1. A cantilever beam under tip roll-up moment

Eight clements are used to idealize a
cantilever subjected to an end moment as shown in
Fig. 5. This problem is chosen to examine a
geometrically nonlinear problem with large
displacements and rotations.

An initially straight beam is under tip roll-up
moment. The tip moment is applied until the beam is
rolled up to form a circle to obtain a 360° rolled-up
configuration. The beam is 12jn. long, while

thickness and width are both 1/;. The material
properties used are Young's Modulus
E =30x10° psi and y=0.0. In Fig. 5, it is

shown that the exact 360° rolled-up configurations
are obtained when the tip moments approaches the
value of 2,7 E] /[ which is divided into 10 load

increments, where £/ is the bending stiffness of the

beam. Each rolled-up shape is achicved with only one
load step. The present results agree well with those
reported in Surana [7].

5.1.3. Composite cylindrical shell under uniformly
distributed load.

Fig. 6 shows a [0/90°] composite cylindrical
shell under uniformly distributed load. All
boundaries are clamped and thc dimensions are
R=2540in., L.=508in., t =254in. and 6 =02rad.

Elastic properties are as follows:
E, =25x10°psi, E, =10°psi ,
G; =G, =05x 10° psi, G, = 02 x 10°psi , v, = 025.

Because of the symmetry of the structure, only a
quarter of the cylindrical shell was modeled with
3x 3 elements. Fig. 7 shows the vertical deflections
at the center of the shell under increasing uniform
pressure up to P = 2.0 psi.

In here, Two load increment methods are
compared. Firstly, The load increment has 1
increment with 0.4 time-end, 10 equal increments
with 0.6 time-end, 20 equal increments with 0.8
time-end, and 10 equal increments with 1.0 time-end.
Secondly, the load increment has 1 increment with
0.4 time-end and 10 equal increments with 1.0 time-
end. The results of the two methods show the exactly
same values and good convergence characteristics.
The present results agree well with those reported in
Kim et al [6].

5.2. Materially nonlinear analysis of the helical-
wound cylinder

For the materially nonlinear analysis, we
perform an analysis of the graphite fiber helical-
wound cylinders under internal pressure. In this
analysis the helical-wound cylinder is assumed to an
angle-ply laminate consisting of + @ laminate. In
order to check the validity of the numerical approach
mentioned above, the filament wound cylinder in Fig.
8 is adopted, for it was studied by Uemura et al [13].
They studied it by the analytic method and carried
out the hydraulic pressure test by use of a handy
pump. The dimensions of the cylinder are
L=550mm in length, D=100mm in inner
diameter, and 4 = 2mm in thickness. Each cylinders
are consisted of [i&]sr. Elastic properties are as

follows:
E, =125x10°"Pa, E = 0854 x 10°Pa ,

Gy =G = G =0511x 10°Pa, v,=027,
a =5277x107 (Pa)?
where ¢ is the nonlinear parameter. Because of the
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symmetry of the structure, only a half of the cylinder
was modeled with 6 elements in the hoop direction
and 23 elements in the longitudinal direction.
Internal pressure is applied and the equivalent nodal
forces of the pressure applied to the cap of the
cylinder are applied as shown in Fig. 8. The
symmetry boundary condition is applied along the
edge of longitudinal axis; the clamped boundary
condition except displacement -3 is applied at the
reinforced parts ; The displacement -1 is fixed at the
central line of the cylinder. Two kinds of laminates

such as [i35°]gT , [i45°]trr are considered in order to

analyze the effect of the winding angle on the
structure.

As the results of the analysis, the average
stress such as o = pr/4h versus the strain curves at

the center of the cylinder are plotted. The
nonlinearity in shear behavior is found in Fig.9. to
give large strains, especially in the range of
30° <@ <55°. Therefore, It is evident that the

nonlinearity should be taken into consideration when
high shear stress exists. The present results agree
very well with those reported in Uemura et al [13).

5.3 The geometrically nonlinear and the
materially nonlinear analysis of the filament
wound pressure chamber

The objective of this part is to show that the
analytical method to predict the deflections of the
filament wound chambers must account for the
geometric and material non-linearity. Filament
wound chambers have the dome contours in which
the composite thickness and the winding angle
varied along the meridional line of the dome. The
dome parts is composed of the angle ply laminate
which is assumed to show the materially nonlinear
behavior, so it is necessary to analyze the chamber
with consideration of the material nonlinearity.

For filament wound chambers, the two kinds
of winding method can be considered such as the
geodesic winding method and the polar winding
method. The geodesic winding method is used to
produce the chamber with equal polar openings so
that the dome shape of the forward and after parts
are same. In the geodesic dome, the stress of the
filament is constant. The polar winding method is
used to produce the chamber with unequal polar
opening so that the forward and after dome shape is
different each other. In this study, We consider only
the filament wound chamber with the geodesic
dome.We briefly explain the design method of the
geodesic dome shape. The detailed design method
can be found in Reference[16] .

The dome shape of the geodesic can be described as
follows:

1pa 2 2
c=2 [l No=F X7 -pixd -, ) 6
= [p; Fy.k)+(1-p )E( w,k)] / Jl -p

where

p=rlty, py=n[r,, ad 0= zfr, are the
normalized dimensions; r, is the radius of the
cylinder ; r, is the radius of the opening of the dome;

r is the local radius of the dome; z is the height from
the bottom of dome; F( y/,k) and E(y,k) arc

the first and second kind of elliptic integral,
respectively. And W,k are described as follows:

st y=(1-2)/(1-p)) , k=(1-g)(-p)) 37
where

o= {ar3plria-pd) -1},
pr=-2{/a F3p0 G-+

Finally, the winding angle with respect to the
meridional line and the thickness of the arbitrary
point of the dome can be described as

(38a)
(38b)

sinw = 1,/1
h = h, 1, cosw, [ r cos®

where h, and @, are the thickness and the winding

angle of the bottom of the dome , respectively.

The isotensoid CFRP pressure vessel which
was used for the kick-motor-case to launch the
scientific satellite "zikiken" in Japan is selected for
the model. The geometry of that chamber is shown in
Fig. 10. The dome shapes, the angle variation, and
the thickness variation along the composite dome is
shown in Fig. 11. The composite chamber is

composed of 3-angle layer such as [:tH]“ for the
dome part ; the thickness of bottom of the dome is
the 2.3 mm ; The cylinder part is reinforced with 6-
hoop plies of the 2.4 mm so that the sequence is
) [90], from the inner layer to outer layer,
from the junction line of the dome and cylinder to
505mm along the meridional line , hoop-plies is
reinforced as shown in Fig. 11. Elastic properties are
as follows:

E, = 125x10"Pa, E; = 0854 x 10°Pa ,

G, = G, = G;;=0511x 10°Pa, v, =0.27,
a=5277x107 (Pa)™ .
Because of the symmetry of the structure, only a
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quarter of the cylinder is modeled with 10 elements
in the hoop direction and 24 elements in the
longitudinal direction . The symmetry boundary
conditions are applied along the edge lines of the
cylinder but at the polar boss parts, all displacements
and rotations are fixed except the axial displacement
The composite chamber is subjected to
internal pressure up to P =5.39 AJPa which has

20 equal load increments, but the equivalent axial
nodal forces of the pressure is applied at the polar
boss parts.

In Fig. 12, the initial structure and the
deformed shapes for the linear case and the nonlinear
case are presented at pressure P =539MPag . In

Fig. 14 for the linear and nonlinear case at pressure
P=4.31MPa, the strain variations of the entire

model are shown in the hoop and meridional
directions, respectively. The abscissa of the graphs is
the distance from the junction of cylinder and dome.
These plots show the difference in the predicted dome
deflections between the linear and non-linear
analyses. This deflected shape from linear analysis
as shown in Fig. 12b exhibits significant flexure
effects at the dome—cylinder junction area and at the
tip of the polar boss, because of the sudden increase
in the chamber stiffness in these areas. These
changes in flexural stiffness are due to the presence
of hoop windings in the cylinder and of the polar boss
at the other end. Since pressure is assumed to be
applied on the undeformed shape in the linear
analysis, flexure effects become proportional to
pressure and thus remain significant compared with
membrane effects at any pressure level. The
nonlinear analysis leads to almost uniform, smoothly-
varying deflections of the dome as shown in Fig 12c,
exhibiting a radial growth at any location. This type
of analysis, accounting for the changes of the dome
curvature during the pressurization, results in quite
negligible flexure effects compared to membrane
effects at high pressure levels due to the internal
pressure applied to the deformed shape.

Looking into the strain variations as shown in
Fig. 13 for the nonlinear analysis, the meridional
strains are uniform at the dome but the meridional
strains increase due to the increment of winding
angle and flexure effects near the tip of polar boss.
On the polar boss, strains decrease due to the effect
of metal insert. The variations of hoop strains are
small at the dome but near the tip of polar boss, hoop
sirains increase due to the increment of winding
angle. On the polar boss, hoop strains are negligible
due to the effect of metal insert. At the cylinder part,
hoop strains increase due to the hoop stress

increment. In Fig. 13, the experimental results
performed by lida [21] can be shown. Finite element
results are in reasonable agreement with the
experimental results

The fiber stress distributions the inner and
outer ply are plotted along the length of the structure
in Fig. 14a at the pressurc P=431MPa. The

stresses in these figures do not mean the 2-PK
stresses but the Cauchy stresses. The fiber stress o,

in the angle ply is relatively constant at the dome
part because of the isotensoid dome contour. But in
the dome-cylinder junction area of the polar region,
the fiber stresses in angle ply are maximum. In the
hoop ply, the fiber stress at the cylinder part are
maximum. Theses fiber stresses on the dome and
cylinder parts are less than the unidirectional fiber
strength which has the value of X =1870MPa. The

transverse fiber stress distribution is plotied in Fig
14b. The transverse fiber stress of angle ply is
maximum at the tip of the polar boss because of the
increment of the winding angle; the transverse fiber
stress of the hoop ply is maximum at the cylinder
part. The maximum value of it is 49 MPa which is
close to the value of the transverse fiber strength of
Y =59.3 MPa, so that the first ply failure may occur

at the next load step. Considering the shear stress
distribution in Fig 14c, The maximum value of it is
29 MPa which is much less than the shear strength
of $=99.6 MPa. At that value of 29 MPa, the shear

stress-shear strain relation is linear as shown in Fig.
4, so that when the only geometrical nonlinear
analysis is compared with the geometrically and
materially nonlinear analysis, the difference between
them is negligible. By way of illustraion, typical
strain gage - load histories are depicted in Fig. 15 for
the meridional and hoop strains at the location B at
the Fig. 10. Just as finite element results shows linear
behavior when the geometrical and material
nonlinear analysis is performed, as the experimental
results can be seen linear.

CONCLUSIONS

An incremental Total Lagrangian Formulation
is use for the degencrated composite shell elements
that includes the effect of large rotation increments
and material nonlinearity. The advantages of the new
formulation over the standard formulation are to
remove the restriction of small nodal rotations
between two successive load increments and to
permit large deformation and large rotations with
good convergence. The results of the numerical tests
demonstrate that the present model] is suitable for
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solving problems involving large rotations. :

The results obtained from the analysis of a
filament wound cylinder with angle-ply prove the
efficiency of the present formulation in the material
nonlinear analysis.

As a practical example, the filament wound
pressure vessel is analyzed with the geometrically
and materially nonlinearity taken into account. The
numerical results agree well with the existing
experimental results. For the case of CFRP pressure
chamber, the effects of the materially nonlinearities
are negligible due to the low shear stress level.
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