Proceedings of the Korean Nuclear Society Autumn Meeting

Seoul, Korea, October 1995

A Knowledge - Base Verification of NPP Expert systems
using Extended Petri Nets

il Won Kwon and Poong Hyun Seong

Korea Advanced Institute of Science and Technology

Abstract

The verification phase of knowledge base is an important part for developing reliable expert
systems, especially in nuclear industry. Although several strategies or tools have been developed
to perform potential error checking, they often neglect the reliability of verification methods.
Because a Petri net provides a uniform mathematical formalization of knowledge base, it has been
employed for knowledge base verification. In this work, we devise and suggest an automated tool,
called COKEP (Checker Of Knowledge base using Extended Petri net), for detecting incorrectness,
inconsistency, and incompleteness in a knowledge base. The scope of the verification problem is
expanded to chained errors, unlike previous studies that assumed error incidence to be limited to
rule pairs only. In addition, we consider certainty factor in checking, because most of knowledge

bases have certainty factors.

1. Introduction

The adoption of expert systems mainly as operator support systems is becoming gradually
popular in nuclear industry as the control algorithms of nuclear power plant system become more
and more sophisticated and complicated. As a result of this popularity, a large number of expert
systems are developed, and most of these systems employ a rule-based formalism for knowledge
representation since it is the simplest knowledge representation method to develop. In spite of this
advantage, incorrectness, inconsistency, and incompleteness may be inadvertently brought into the
knowledge base because it is often built in an incremental process. In other words, such
anomalies may occur at any stage in the knowledge transfer process that is to transfer expertise
from the human expert into the computer by the knowledge engineers. Therefore, it is widely

noted that assuring the reliability of knowledge-based systems is very important, especially in

—173-

nuclear industry, and it is also recognized that the process of verification is an essential part of
reliability assurance for these systems.

The traditional approaches to knowledge base verification, which have generally involved each
rule comparison and decision context enumeration[1], are computationally expensive. They used
domain-specific information in the verification process. Verification tools and algorithms
developed later, such as COVADIS[2] and EVA[3], were based on a variety of approaches and
were capable of detecting more subtle cases of anomalies. In recent days, a Petri net-based
verification method was proposed[4]. A numerical Petri net was used to model knowledge base of
production rules, and reachability analysis was then conducted to reveal inconsistency and
incompleteness in a knowledge base[5]. In PREPAREJ[6), anomalies in a knowledge base are
defined in terms of the Pr/T net model. Then, these terms are identified by using syntactic pattern
recognition method.

The conventionally proposed methods are inefficient for large systems with chained errors and
certainty factor errors. In order to extend previous researches we consider verification of
knowledge base having certainty factor, in global level as well as in local level. We devise and
suggest an automated tool, called COKEP (Checker Of Knowledge base using Extended Petri net),
for detecting incorrectness (redundant, subsumed, circular rules), inconsistency (conflict rules),
and incompleteness (unreachable conclusion, unreferenced conditions, isolated, omitted rules) in a

knowledge base.

2. Anomalies in Knowledge base

The anomalies in knowledge base can be divided into three types, that is incorrectness,
inconsistency, and incompleteness. The illustration of them is following:
Incorrectness

Redundant rules: Two rules are redundant if they contain the same conditions and have the
same conclusions. Since the rules might count twice, the weight of their conclusions is increased.

Subsumed rules: One rule is subsumed by another if the two rules have the same conclusions,
but one contains additional constraints on the conditions. The rule IF (a(x) and a(y)) THEN c(z) is
subsumed by the rule IF a(x) THEN c(z), where x, y, and z are variables, and « and ¢ are logical
relationships. Whenever the more restrictive rule succeeds, the less restrictive rule also succeeds,
resulting in redundancy. Additionally, the more restrictive rules add weight to the conclusions by

the less restrictive rules.

~174~

Circular rules: A set of rules is circular if the chaining of rules in a set forms a cycle. If we
have the set of rules such as IF a(x) THEN b(x), IF b(x) THEN c(x), and IF c(x) THEN a(x), the
systems enter infinite loop at run time unless the system has a special way of handling circular
rules. Also, this definition includes the possibility of a single rule to form a cycle, i.e., IF a(x)
THEN a(x).

Inconsistency

Conflicting rules: Two rules are conflicting if they have the same conditions but with
conflicting conclusions. Formally, the rule IF a(x) THEN b(y) is contradictory to the rule /F a(x)
THEN c(y). Sometimes, given the same set of symptoms, the expert might wish to conclude
different conclusions with different certainty factors.

Incompleteness

Unreachable conclusion rules: In a goal driven production systems, the conclusion of a rule
should match either a goal or an IF condition of another rule. If there are no matches, it is
unreachable. If a chain of rules produces a certainty factor less than the threshold, it is also
unreachable.

Unreferenced condition rules: If the one of rule conditions does not appear as the conclusion
of another rule and as a known fact, it is an unreferenced condition. Rules with an unreferenced
condition may indicate the possibility of some other rules or facts missing.

Isolated rules: If all of conditions are an unreferenced condition and the conclusion is an
unreachable conclusion, then the rule is called as an isolated rule. The presence of an isolated rule
may indicate the possibility of missing rules.

Missing rules: The knowledge base has deficiency when the rule will not produce any output.
These rules can be indicated by unreachable conclusion rules, unreferenced conditions rules, and

isolated rules.

3. Knowledge Base Verification Tool The structure of a extended Petri net is defined by its
places, transitions, input functions, and output functions
3.1 Extended Petri nets

An extended Petri net is composed of six parts: a set of place P, a set of transition state place P’,
a set of transitions 7, input functions /,, input functions /;, and output functions O. The input and
output functions are related to transitions and places. P ={py, p., ... , p.} is a finite set of places, #

20. P'={p’, p's, ... , p'm} is a finite set of transition state place, m =0. T={t,,t,, ..., t»}is a finite

—-175-

transitions, m = 0.

Input places of the transition, in the extended Petri net, are classified into two types. ‘A’ is the
output place of a different rule, which is used for searching the path of chained rules. ‘B’ is the
initial marking place, which is used for finding the known fact of chained rules(Fig.1). Input
functions /; and I, are made by each input place, ‘A’ and ‘B’. Place ‘C’ is the transition state place
that informs whether transition is fired or not. Since the places ‘A’ and ‘B’ maintain the
information of known fact, after firing transition, another place,’C’, is required to check the firing

transition.

3.2 Matrix Equations

An anomaly detection approach is based on a matrix view of Petri nets. Three matrices D, D,
and D” to represent the input and output functions can be defined from the (P, P!, T, I, I, O)
definition of extended Petri nets. Each matrix has m rows for each transition and » columns for
each place. ¢[j] means the unit m-vector that is zero everywhere except in the jth component. The
transition # is represented by the unit m-vector e[;].

A transition #is enabled in a symbol u if 4 2 e[j] - (D7} + D7;). The result vector, defined as
3(u, 1), of firing transition 4 in a marking 4 is

8 (u, 4)= u - (e} D1+ Dyt (elf] DY)

u +efj] (D7- (D) + D))
u +eljl D ¢))

where,
D=D"-(D + D) Dulil=# (i, 1; (4)) , D2 [i.i1=# (pi, L (&), and D" [j,il= #(p:, O (1/))-
Now for a sequence of transition firings o=1¢, t;2, ..., s,
S (1,0)=8 (1 by, by, ., i)
u +{eljl] DY+ (elj:} DY+~ Heli] D)
m (el eliat ~ +elis]) D
u +f(o)'D @)

The vector f(&)= elj}+ elj:}+ ~ +elji] is called the firing vector of the sequence &, t...., ti .

i

il

fl

4. Anomaly Detection
An alternative strategy is provided in this work, transforming the problem of verification into

that of reachability of specific states in the net. As the detection of anomalies is based on the

~-176 -

results of firing transition, verification problems can be expressed as reachability problems. In
order to solve these problems matrix analysis of the extended Petri net and backward chaining
methods of the rule set are employed.

The matrix analysis has some problems in checking anomalies. The result vector of firing
transition # in marking u is a necessary but not sufficient condition for reachability analysis in
chained rule set. A backward chaining method in the rule set is used for solving this problem. First,
the result vector of firing transition is obtained by the matrix analysis, eq.(1) and (2). Then, we
find chained rule path using matrix D", and backward chaining method. The conditions for chained
rule transition can be acquired by matrix 0, which has the information of initial marking places.
The certainty factor checking is performed after finding the chained rule path. The general

procedure of these checking process is shown in (Fig. 2).

5. Conclusion

The verification has, until now, focused upon building novel anomaly detection systems and
improving the efficiency of existing systems. The issues of theoretical foundations of knowledge
base verification, however, have remained unaddressed. This work provides reliable verification
method that adopts improved verification techniques and an automated integral verification tool.
COKERP is based on modeling a knowledge base by using the extended Petri net, and uses matrix
analysis and backward chaining methods in verification process.

The scope of the verification is expanded to chained errors, unlike previous studies that
assumed error incidence to be limited to rule pairs only. In addition, we consider certainty factor

in checking, because most expert systems have certainty factors.

References

1. B.J. Cragun and H.J. Studel, "A decision-table-based processor for checking completeness and
consistency in rule-based expert systems," Int. J. Man-Machine Studies, vol. 26, pp. 633-648, 1987.

2. M.R. Rousset, “On the consistency of knowledge bases: COVADIS system,” Proc.8th Eur. Conf. Al, pp.
79-84, 1988.

3. C.L.Chang, J.B.Combs, and R.A.Stachowitz, “A report on the expert systems validation
associate(EVA),” Expert Systems with Applications, Vol. 1, pp. 217-230, 1990.

4. P.Meseguer, “A new method to checking rule bases for inconsistency: A Petri net approach,” Proc. 9th
Eur. Conf. Al, pp.437-442, 1990.

5. N.K. Liu and T. Dillon, “An approach towards the verification of expert systems using numerical petri
nets,” Int. J. Intell. Sys., vol. 6, pp. 255-276, 1991.

6. D. Zhang and D. Nguyen, "A tool for knowledge base verification," IEEE Trans. Knowl. Data Eng.,
vol.6, no. 6, pp. 983-989, Dec. 1994.

-177-

C

NN
' O=H- OO -
B @7

Fig. 1 A example of the extended Petri net model

Get Knowledge Base (KB)

Transform Knowledge Base to
extended Petri net model

+

Matrix equations

Find chained rule

Detect anomalies

Certainty factor checking

Classify the results I

Fig.2 The schematic diagram of the anomalies detection procedure

-178—

