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Abstract - DYLAM and its related applications are reviewed in detail and found to have many
favourable characteristics. Concerning human factor analysis, the study demonstrates that DYLAM
methodology represents an appropriate tool to study man-machine behaviour provided that DYLAM is
used to model machine behaviour and an appropriate operator interface human factor model is
included. A hybrid model which is a synthesis of the DYLAM model, a system thermodynamic
simulation model and a neural network predicative model, is implemented and used to analyse
dynamically the CANDU pressurizer system.

1. Introduction

In recent years the growing sentiment that system dynamic and their interaction with the random
evolution of component or operator states was inadequately treated by classical methodology resulted
in the development of new models. Theses new models are reviewed in this paper.

The usual approaches for probabilistic accident evaluation do not satisfactorily take into account the
dynamic aspects of the random interaction between the “physics” of the transients and the “logic” of
the system. The presence of control loop, the human interventions, protection system and failure delay
system which the occurrence of cut set causes a top event condition only after a significant condition
and a significant time delay are difficult to treat. In order to remove these limitations and to fill the gap
between the need of more realistic analysis and available tools, dynamic methods have been
developed. Among these dynamic methods, Discrete Event Trees (DYLAM) is particularly suitable for
treating complex dynamic systems.

2 DYLAM ((DYnamic Logical Analytical Methodology)
2.1 Basic Features of the DYLAM approach

The DYLAM method can be seen as a systematic attempt to combine the stochastic and physical
behaviour. It is different from other traditional techniques because the impacts of hardware system
failures on the progress of physical parameters are immediately evaluated by solving the governing
equations for new system conditions. Since the DYLAM consider the process simulation and changes
of the system structure due to control and due to random events in a combined way, it can be seen that
the DYLAM has the capability to perform a systematic and dynamic analysis.

The way in which a fault tree model is constructed and then analysed is that at first the undesired
condition for the system is identified and then the fault tree is constructed by top-down deductive
reasoning by linking the TOP event to its more proximate causative sub events and these down to the
primary events. On the other hand, DYLAM is based on bottom up procedures for identifying the
sequences of events that can lead to undesired conditions. Component modelling consists of
identification of the different failure or degradation states in which a component may be. Once the
components have been modelled, implicitly, the system has been described for all its possible states.

2.2 The basic steps of DYLAM

The basic steps to implement DYLAM can be summarised as follows.
(1) Component modelling
(i) constant probabilities;
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(ii) stochastic transition;

(iii) functional dependent transitions;

(iv) stochastic and functional dependent transitions;
(v) conditional probability;

(vi) stochastic transition with variable transition rates;

(2) system equation modelling

To implement the system, non-linear algebraic equations have been solved. Considering large
computational times, the physical models to be adopted should be as simple as possible compatible
with the requirements of the analysis.

(3) Top event definition

The next step is to define undesired system states. These are defined in physical quantitative terms
rather than hardware states and Top event analysis determines when a particular accident sequence
simulation should be terminated.

{4) Event sequence generation rules .

To exploit all possible accident sequences, following procedure is applied: Firstly starting at +=0 and
some user-defined initial state; secondly the system physical model is used to determine the system
variable value change in the next step At; thirdly at the end of the first time interval (0, At), all possible
system state transitions are identified and transition likelihoods are calculated.

When the probability of the initial sequence becomes less than or equal to a fraction of the initial
probability,

P(Ag, ) S P(Ag,tp) * Wiim

where Wlim is the fractional probabilistic threshold , the branch point is triggered. Here P(A,t) consists
of the probability of remaining in the initial state and birth probability for the descendent sequence. If
the probability satisfies the upper condition, branch point is generated. These new states are then used
to provide boundary conditions for the physical variable updating. Until an absorbing state is reached,
all possible event sequences continuously are generated in the same manner.

3 Simulation

In arder to better understand the features of DYLAM code when applied to the reliability analysis of a
dynamic system, dynamic behaviour of a CANDU type pressurizer has been chosen as a case study.
The preparation work required to implement CANDU pressurizer model using DYLAM and also
describes DYLAM results obtained.

A hybrid model has been developed for assessing pressurizer transient. The hybrid model is composed
of 3 parts :

i) DYLAM code;

ii) System thermodynamic simulation code;

iii) Neural network code.

Since DYLAM is a simulation-based dynamic approach, to analyse system reliability, system
thermodynamic simulation code is needed. However, to reduce calculation time and to enhance the
efficiency, data required for the transient behaviour of the system other than pressurizer were generated

using neural technique model developed.

3.1 Neural Network Back-propagation Fitting

In developing a model which represents system behaviour, it is the topology of the network, together
with the neuron, or node, processing function, which determines the accuracy and degree of the

representation. Here, the neural network was used for estimating physical variables to implement
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DYLAM. Generally, the power plant physics simulation codes involves of a large number of
variables. That means for implementing DYLAM, it should involve considerable physical data as
required restart values. When considering the computing effort, this is not an efficient way to simulate
whole system on every component states in order to obtain the behaviour of a subsystem. In other
word, a drawback of DYLAM is that it is a total system technique and can be relatively inefficient
because of very many variables involved to get a restart values and considerable computational time
required if one is wishing to focus on a particular subsystem such as the pressurizer.

When future predictions rely on previous network outputs which are fed back to network inputs, the
usefulness of the neural network model has been frequently noted. Since this application describes
system dynamics, the integration of dynamics into the network should be required. The most concise
network representation of a dynamic system is obtained by using network inputs comprised of past
input and output data. In this application (Fig. 2), the following configurations for process modelling,
so called predictor structure, has been adopted.

_ ;I Press (t)
Neural Network model 2 Temp %
Flow(t

Press (t-1
Temp t—l;
Flow(t-1

pressurizer model

Level, Press
QHT

Fig. 2 Dynamic system predictor structure

In neural network model, following input data are needed
Outlet header pressure at previous time : Press(t-1)
Outlet header temperature at previous time : Temp(t-1)
Surge flow rate at pervious time : Flow(t-1)

Power fraction

Pressure in pressurizer : Press

Pressurizer level : Level

heat generated in pressurizer : QHT

and following data are updated :

e Outlet header pressure : Press(t)

e Outlet header temperature : Temp(t)
e Surge flow rate : Flow(t)

These trained data generate a non linear equation. The computer code used to generate training data
was the CANDU simulation code which is under development in IAE.

The following figure shows the back-propagation neural network used to model the performance of a
pressurizer during the power transition.
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inputs hidden layers outputs

Here k=8 ( including one bias neuron)
=8 (including one bias neuron)
m=3

Fig. 3 Typical feedforward neural architecture

3.2 DYLAM modelling

The stepback power transient procedure was chosen to simulate the behaviour of the pressurizer.
Pressurizer is composed of heaters and bleed valve. In step power transient procedure, the steam bleed
valve does not act. So, in this application, only heaters need to be considered. Furthermore to reduce
calculation time component grouping rule was adopted. Component 1 represents a variable heater and
component 2 represents four on-off heaters.

Two different top conditions depending on outlet header pressure were chosen. When the outlet header
pressure is below a prescribed value, the fail Top condition is triggered. The mission time is 100
seconds and during the mission time, reactor power is reduced from full power by 60 %.

The following assumptions were made to use DYLAM :

» The components failure behaviour are statistically independent of each other

¢ All the components have the same nominal conditions at time zero.

¢ A failed component can not be repaired during the mission time.

As mentioned in the previous section, data required for the transient behaviour of the system other than
pressurizer were generated using the neural technique model developed for the present neural network.

3.3 Numerical Results

To demonstrate the thermal hydraulic model of pressurizer combined with neural network modelling,
stepback power transient event was simulated as a case study.

CASE 1

When the components have a probabilistic behaviour that depends on time according to constant
transition rates between states, the following assumptions are made:

¢ All the components behave stochastically

o The failure rates of the components are A =3.0 x 10'5, A =10x 10'4 respectively for
component 1, component 2.

CASE 2 -78 -



When the components have a probabilistic behaviour that depends on the time and is also functionally
dependent on a physical variable of the system, the following assumptions are made:

e All the components states are subject both to stochastic transitions and to transitions due to the
effects of process physical variables (TZ1)
All the components are normal at initial pressurizer water temperature
Functional dependent transition probabilities are :

oozl T305°c)=08,  poierzi T305°c)=02,  prorzi T305°0)=00, P31z T305°0)=10
Poo(TZ1 ¥ 305°C) =038,  Po1(TZ1 ¥305°C)=02,  Pyo(TZ1 ¥305°C)=00,  Pyy(TZ1 ¥305°C)=10

CASE 3

When the components have a probabilistic behaviour that depends on time according to variable
transition rates between states which are function of a process variable, the following assumptions are
made:

o All the components have the transition rates which are function of TZ1

(including time).
o All the components are in normal condition at the initial pressurizer water temperature.
e Variable transition rates of between the states ( i) TZ1 < 305°C, ii) TZ1 = 305°C ) are :

When TZ1 < 305°C, Ay =3.0x 10

A2=7.0x 1073
When TZ1 2305°C, A1 =3.0x 107
A2=7.0x 107

4. Conclusion
From the present study, the following conclusion can be drawn :

1) Event/fault tree methodology has serious deficiencies with respect to modelling of dynamic
scenarios.

2) The major advantage of DYLAM related approach is that it can realistically model physical
behaviour, since it includes the physical equations governing system behaviour.

3) DYLAM has its particular value in that it can provide a comprehensive and structured approach for
studying dynamic problems.

4) Use of DYLAM is unrealistic when used to analyse complex system without introducing
truncation rules that can effect accuracy of representation.

5) It is demonstrated that an effective methodology for system reliability analysis is a hybrid model
which is a synthesis of the following three models: i ) DYLAM model; ii) system thermodynamic
simulation model; iii) neural network predicative model.

6) DYLAM can be used to model human operator interface behaviour provided an appropriate human
factor model. 79
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Fig. 4 TOP event probability of each case study

Here, Series 1: probability of fail TOP event

Series 2: probability of success TOP event
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