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SUMMARY

In the present paper, visualization techniques in fluid dynamic experiments such as Schlieren photograph
are numerically simulated so that the same output as the experimental flow visualization can be obtained
from the computed results for the fair comparison. Numerical methods to simulate optical
visualizations, that are Schlieren photograph, shadowgraph and interferogram, are considered. Some
examples of pictures obtained by the present methods show the importance of the simulations of
visualization techniques for the correct comparisons of the computations and experiments.

1. INTRODUCTION

As the scale of fluid simulations becomes larger with the aid of supercomputers,
importance of the postprocess of such simulations begins to be recognized.

The postprocess in computational fluid dynamics (CFD) has two purposes. One
is to examine computed results to confirm that they give physically reliable answers.
The other is to analyse the computed flow fields and extract flow physics under the
assumption that the computations are reliable.

In order to confirm the reliabilities of the computed results, comparison with the
experiment is useful. Historically from the very early stage of the CFD,
comparisons by numbers such as forces, moments and pressure distributions have
been frequently made. Comparisons by numbers have no ambiguities and they
might be sufficient when the simulated flow fields are relatively simple such as the
flows over an airfoil.

For complicated flow fields involving shock waves, separations, vortices and their
interactions, entire flow fields should be compared. Comparison with the visualized
image in the experiment is useful for this purpose. Computed results must then be
visualized for the comparison with visualized images taken in experiments.
Visualization of computed results is an important part of the postprocesses and is
becoming popular with the progress of computer graphics (CG) and graphics
workstations. However, much more attention should be paid to the visualization of
computed results. For instance, the density contour plots at a certain plane (plane
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of symmetry in the case of axisymmetric body, for instance) in computations are
often compared with the Schlieren photographs taken in the experiments. Schlieren
photographs are not the visualized image of the density within the plane although
it is true that the density distribution is a key parameter for the Schlieren
photographs. There is difference between the Schlieren photograph and the density
contour plots and this differences might introduce misunderstanding of the
computed result in the comparison with the experiments.

Plotting density contours within a plane is an easy task on the computer and they
are sometimes satisfactory as a postprocess. However, one advantage of the CFD
is availability of the information for entire flow fields. It is possible to numerically
simulate the process of experimental visualizations and obtain the same sort of
pictures from the computed results as those from the experiments. These pictures
can be compared with the experiments directly.

In the present paper, numerical methods to simulate visualization process in
experiments (Tamura et al. (1990a)) are discussed. The visualization methods in this
context are limited to the optical methods, namely Schlieren photograph,
shadowgraph and interferogram. In the next section, the principles of optical
methoas are briefly reviewed. The numerical methods to simulate each experiments
are described with some examples in the third section. Nonlinear effects of the
deflection of light are also investigated and the last section concludes the present
work.

2. PRINCIPLES OF OPTICAL VISUALIZATION METHODS
2.1. Deflection of Ray of Light

The basis of optical visualization experiments is that the velocity of light differs
according to the density of medium through which the light goes and as a result,
the deflection rate of light changes (Liepmann et al. (1956)). It can be written as,

Co __ ya .

5

where 7 is deflection rate, c is speed of light, (-)¢ indicates a state of vacuum and
(-)s indicates a standard state. Although this equation is a first-order
approximation, the higher-order error is negligibly small in the case of air. fis a
non-dimensional parameter and B =0.000291 ~ 0.000297 according to the
wavelength.

When variation of density exists in the flow field, a wavefront of light turns due
to the difference of local speed of light. Figure 1(a) shows the schematic picture of
the turning of the wavefront of light, where w denotes the wavefront and r denotes
the direction of light. Let the turning angle of wave front ¢, a coordinate along the -
ray of light £ and normal to the ray 5, as shown in Figure 1(b), the deviation of the
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Figure 1 Deflection in density field (Liepmann et aol. (1956)) (a) Rays (r) and wavefronts (w)
(b) Orthogonal networks of rays and wavefronts.

turning angle ¢ due to the difference of the local speed of light can be written as,

A¢___Ac-6t=Ax-A£
Ay c*Ay
and,
dg _1jdef_1]dn
dt c|dn| nldy @

With p, the density normalized by the standard state, the deviation of ¢ in y
direction in Figure 1(b) can be written as,

g a 9

n

°©
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Assume that the ray of light comes along z axis and the light deflects only in y
direction, ¢, the deflection angle of light to z axis can be written as,

e= Sm do (4)

If the deflection is small and the light path can be approximated as y = y,,

(" (B2
-1, (28), = ®
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where L is the length where the light experience the density gradients (the width of
the test section, for instance). Note that this approximation is not necessarily exact
for strong density gradients, such as shock waves and boundary layers. When the
flow field is two-dimensional and constant in z direction, and n = 1,

_rafd /
€= Lﬂ(a)’)yl ©)

Consequently, the deviation of light is proportional to the density gradient in its
direction, and this is the basis of the optical visualization methods.

The following discussion will be based on equations (5) and (5)' though there are
some approximations between equation {4) and equation (5) (or equation (5)').
Effects of the approximations, in other words non-linear effects, will be discussed
in the fourth section. -

2.2. Principle of Schlieren Photography

The principle of Schlieren photograph can be described based on the discussion
in the previous section. Figure 2 shows an optical system for Schlieren photograph.
The deviation only in the y direction is considered for simplicity.

When setting a light source of a finite width at the focal point of lens L;, the
uniform parallel light goes through the test section, is deflected in lens L., and
makes the image of the light source at the focal point of the lens Lz. Lens L3 make
the light paralle] again and a screen is illuminated. The screen is set at a certain
location where the image of the test section is focused.

When the density varies in the test section, the light turns according to the density
gradient. Since the screen is placed in the focal point, the light, which goes through
the test section and the lens L, illuminates the same position of the screen as in
the case of no density variations. Thus the lightness on the screen is constant in the
Schlieren system even though there are some density gradients in the test section.

On the other hand, when a plate (usually a knife edge) is placed as to hide half
of the light at the point where the light source focuses, the intensity of the light is
reduced to be its half and then a lightness on the screen also becomes half in the
case of the constant density. When there are density gradients in the test section,

Test section

Screen

A Image of light source

| i

Light source
¥
S
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Figure 2 Schematic picture of Schlieren system (Liepmann er al. (1956)).
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the image of the light source is shifted at the knife edge and the blocked area of
the light is not necessarily half and is dependent on the rate of deflection of the
light. Hence, let f> the length of the focus of the lens L,, b the width of the light
source and Jp the intensity without the knife edge, and using the rate of deflection
g, the intensity on the screen becomes,

I=1 (0.5 +j—r2- e> 6)

in two-dimensional flow,

_ S dp ,
I= 10<0.5 + 5 LB(ay)y,) ()]

Note that 0 <7< Io. The intensity outside of this range occurs when the light
deflects too much and is completely hidden by the knife edge or completely clear
from the knife edge. Within this range, the intensity of the screen is proportional
to the density gradient. Though the light may turn to x direction with the density
variations in x direction, dp/dx has no effects to the intensity since only y direction
is effective for the knife edge placed horizontally. If the knife edge is set vertically,
only the density gradient in x direction is observed.

Colour filters are often used instead of knife edges. The colour filters are usually
made of three strips of filters, namely, red, green and blue, which are aligned to
each other. For example, if the colour of the middle filter be green, and the width
of the image of the light source at that point be the same as that of the green filter,
then the colour on the screen becomes green mixed with red or blue according to
the drift of the light. The rate of mixture is proportional to the density gradient and
the resultant colour is linearly proportional to the colour function of so-called Hue.
The difference between the knife edge Schlieren and the colour Schlieren is that the
intensity of the screen is constant in the case of colour Schlierens and not in the case
of knife edge.

2.3. Principle of Shadowgraph

Shadowgraph technique is similar to the Schlieren photograph. The major
differences are that no knife edges are used and that the screen is placed out of the
focal point. Since the screen is not at the focal point, the light does not come to
the same position on the screen when the light is deflected due to the density
gradient. Thus the lightness on the screen is not uniform when the deflection of light
is not constant as shown in Figure 3, even though the light is not shielded by knife
edges. Define the lightness on the screen as I, and since I is proportional to the
deviation of the deflection of the light, I can be written as,

e ™

Te dx

where &, & are the deflections of the light in x and y directions, respectively.
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Figure 3 Principle of shadowgraph (Liepmann et al. (1956)).

In two-dimensional flows,
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In the case of a shadowgraph, the positions of an image on the screen do not exactly
correspond to those in the test section and the image is obviously distorted where
the density gradient is strong. Hence the comparison of the shadowgraph images
between computations and experiments may be qualitative rather than quantitative.

2.4. Principle of Iterferogram

The principle of interferogram, which is different from either that of Schlieren
photograph or shadowgraph, is interference of light. Figure 4 shows the paths of
two lights which start from the same source and one of which goes through the test
section and the other goes through the reference area. The two lights meet on the
screen and the path lengths are the same. When the densities in the test section and
in the reference area are different, the effective path lengths differs since the speed
of light differs by the principle of equation (1). This can be written as,

AL=cox(£—£>=nL—n$L=ﬁmL ®)
C Co, Ps

where L is the physical path length and (-)s denotes the standard state in the
reference area. Equation (8) shows that the difference of the two path lengths is
proportional to the differences of the densities in the test section and in the
reference area. The differences of the path lengths causes the black and white stripes
on the screen. The drift of the stripe AN by the difference of the path lengths can
be written with the wavelength of light in standard state As as,

AL _BLp—p;s
AN=2Z_EZ
)\s )\s Ps (9)
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Figure 4 Schematic picture of interferogram (Liepmann et al. (1956)).

When AN is just an integer, the phases of two lights meet and the screen becomes
bright. On the other hand, when the fraction of AN is 0.5, the phases are reverse
and the screen becomes dark.

The interferogram is set either to have some stripes even in uniform flow and
distort them by the variation of density or to have no stripes (or one) in uniform
flow. The former setting is called finite fringe and latter called infinitesimal fringe.
In the case of the infinitesimal fringe, AN is just as written in equation (9) and AN
becomes N;(x,y)+ AN in finite fringe, where N;(x,y) is the stripes in uniform
flow.

3. SIMULATION OF EXPERIMENTAL VISUALIZATIONS BY
COMPUTERS

3.1. Simulation of Schlieren Photograph

Two-dimensional flow fields are considered first. The lightness on the screen I
follows equation (6)’ as,

S 30)
I=h{Fpr+Z= LB —
°( b Bay

Here the lightness on the screen with no density gradient is denoted by F, which
is supposed to be 0.5 in the previous section. Suppose the lightness ranges from 0
to 1 and denote F, the factor for the density gradient, then the equation above
yields,

dp
I=F, 9oP
+ Fp ay (10)

Thus the lightness of a certain point on the screen is obtained by the density
gradient normal to the knife edge from the computed result. There are two
parameters in equation (10). F, can be 0.5 usually. When the density gradient is
biased to positive or negative value, F, can be changed to use the lightness range
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effectively. On the other hand, F, corresponds to the sensitivity of the Schlieren
system and is thus variable. It is usually set empirically with the magnitude of
density gradient, though it could be calculated directly from the parameters of the
experiment system, such as the features of the lens.

In the case of colour Schlierens, hue corresponds to the lightness as,

dp

H Fn+F0
dy

(11)

Hue is a periodic function and generally red corresponds to 0 (and 1), green to 1/3
and blue to 2/3. Hence F, should be 1/3 and Fo should be set such that 0 < H < 2/3
when the sequence of the colour of the filter is red, green and blue.

The way to draw pictures by computer graphics (CG) after obtaining the lightness
or colours is not the focus of the present paper. Briefly speaking, recent CG
softwares can fill out the inside of the three-dimensional polygons with smooth
colour gradations from the coordinates and the RGB values at the vertices of the
polygons. The RGB value at the vertices are obtained from equation (10) or (11)
using finite difference approximations and thus the programming is not a difficult
task. Note that lightness is linearly interpolated by CG but the hue is not since the
colour gradations are achieved by linear interpolations of RGB values and hue is
not a linear function of RGB. As a result, the order of accuracy of the colours
inside grids (polygons) can be less than first-order though it might be accurate
enough for the comparisons of images.

The flow field about a two-dimensional supersonic air intake is taken as an
example. Figure 5(a) shows a colour Schlieren picture in the experiment (Sakata
et al. (1989)) and Figure 5(b) shows a simulated colour Schlieren picture from the
computed result with the same condition (Kuroda et al. (1991)) as the experiment.
Density contour surface plots are shown in Figure 5(c) as a reference. The simulated
Schlieren pictures are obviously better for the comparison with experiments than
the density contours.

In the case of three-dimensional flows, under the assumption that n ~ 1,

Equations (4) and (6) give,
+ 28
I= IO (Fn b So ay d-Z)

and re-written as,

Lap
I-—F,.+F0S a—ydz 12)

0

This integral has to be numerically evaluated in the case of three-dimensions.
Practically, the integration is done by the following manner. First, the structured

grid that we usually used is divided into five tetrahedra to simplify the problem

(Figure 6). Then tetrahedra that the traced ray of light goes through are searched.
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Figure 5 Flow around a two-dimensional supersonic air inlet (a) Experimental colour schlieren
photograph (Sakata et al. (1989)) (b) Simulated color schlieren photograph with computed result
(Kuroda et al. (1991)) (c) Density contours of computed result (Kuroda et al. (1991)). (See color
plate I at the back of this issue.)

- 52 —



Y. TAMURA AND K. FUJII

\

AT
Ammmm——o

pattern 5

Figure 6 Division of a hexahedron.

The ray comes into the tetrahedron through one face and goes out through one of
the other three faces (Figure 7). Since the interpolation inside a tetrahedron can be
linear (this is one reason why we do not use hexahedra but tetrahedra), the
integration of the density gradient inside one tetrahedron can be written as equation

(13).
_1[(20) , (%
Ape= 2 [(a}’)in'+ (ay>out] b (13)
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X

Figure 7 Numerical integration within a tetrahedron.

where (- )in denotes the point where the ray comes in and (- )ou: the point where the
light goes out. /, is a distance between these two points. This integration is carried
out in every tetrahedron that the ray goes through and the integrated density
gradients for the tetrahedra are summed up. Finally the integration of that point
is approximated as,

L
dp
—ds=2,A
Soa)’ zz: pe

and thus,

I=Fn.+ F, 2, Ap; 14)
t

One of practical problems is a search for the tetrahedra. Judgements of
intersections between the ray and a randomly selected tetrahedron might require
considerable time. However, once one tetrahedron which crosses the ray is found,
the tetrahedron into which the ray goes next can easily be found without any
searching processes since these tetrahedra share the same face through which the ray .
goes.

Another problem is a number and positions of ray of lights to be traced. Of
course, as the number of rays increases, the resolution of picture increases but the
computational time also does. For example, the rays from all of the pixels of the
display are ideal, but the number of rays will become up to million and a couple
of hours of the CPU time might be required even with current high performance
workstations. Therefore the number of rays has to be reduced. Here the rays start
only from the grid points of a certain grid surface (practically, the symmetry plane
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Figure § Visualization of flow around a blunt body (a) Experimental Schlieren photograph

(Johannesen (1952)) (b) Simulated Schlieren photograph with computed result (Tamura ef a/. (1990b))

(c) Simulated Schlieren photograph with computed result within a plane of symmetry (Tamura et al.
(1990b)).
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Figure 9 Visualization of flow around AGARD-B model (a) Experimental colour schlieren photograph
(Inatani ef al. (1990)) (b) Simulated color schlieren photograph with computed result (Tamura e? al.
(1990c)). (See color plate II at the back of this issue.)
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is a good choice since its shape corresponds to the Schlieren image). Of course, any
other starting points are possible. Once the lightness on the screen is calculated, the
CG program paints the surface like the contour surface plots.

Some of the application examples are presented. The first one is a visualization
of flow around a hemisphere cylinder (M. =1.96,« =0°). Figure 8(a) shows a
Schlieren photograph in the experiment (Johannesen (1952)) where the density
gradient in y direction are visualized. The simulated Schlieren picture from the
computed results under the same condition (Tamura et al. (1990b)) is shown in
Figure 8(b). These two pictures show a good agreement. Two-dimensional Schlieren
photograph within a symmetry plane is also simulated with the density gradient in
y direction (Figure 8(c)) since properties in symmetry plane are often compared
with experiments. Pictures of the experiment and three-dimensionally simulated
Schlieren show smooth gradation of lightness behind the shock wave. On the other
hand, the lightness suddenly changes after the shock wave in two-dimensional
picture. Since the bow shock wave spreads over the cylinder, the ray of light behind
the shock wave actually crosses the bow shock wave twice and experiences some
density jumps. Experiment and simulated three-dimensional Schlieren photograph
include this effect but it cannot be reflected in the picture of the symmetry plane.
This three-dimensional effects may become important in the case of more complex
flow fields.

As an example of practical configurations, the supersonic flow around a
AGARD__B supersonic wind tunnel calibration model is presented. The free stream
Mach number is 2.2 and the angle-of-attack is 0 degrees. Figure 9(a) shows the
experimental colour Schlieren picture (Inatani ef al. (1990)) and Figure 9(b) shows
the simulated three-dimensional colour Schlieren picture of a computation (Tamura
et al. (1990c)). Shock waves from the nose and wing leading edge, expansion wave
after the body and reflected shock wave on the sting are well resolved.

3.2. Simulation of Shadowgraph

In a shadowgraph, the lightness is proportional to the gradient of the deflection of
light without considering distortion of images. In two-dimensional flow, the
lightness can be written with the lightness of constant deflection of light I as,

aZp aZP
= (L2 15
I 10[1+F<ax2 +W ( )

F is a parameter determined by the distance between the screen and the focal point
and other factors, and is generally negative, as shown in Figure 3, and the screen
becomes dark when the second derivative is positive. Thus the actual numerical
procedure is simply calculating the second derivative of the density at each grid
point using finite difference approximations. As a difference from the Schlieren
photograph, I > Iy is possible when the rays are concentrated. Since the maximum
intensity of the display is finite, the parameters should be chosen to control the
range of 1.
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Figure 10 Simulation of shadowgraph for computed result of two-dimensional supersonic air inlet
(Kuroda et al. (1991)).

Figure 10 shows the simulated shadowgraph picture with the computed result of
the flow around the supersonic inlet taken in the previous section as an example.
In three-dimensional fiow, Equation (7) can be re-written as,

I= 10[ + F,(ae‘ aey>] (15)"
dy

note that,

L
€x=s B dZ, £y=5 62
o 0

Therefore the density gradients in both x and y directions are integrated separately
and then &, and ¢, are differentiated. Tracing of the rays can be done by the same
manner as the Schlieren photograph. Shadowgraphs of an experiment (Lehr (1972))
and a corresponding computation (Matsuo et al. (1991)) of the flow field where
unstable combustion occurs between a blunt body and a bow shock wave in pre-
mixed supersonic flow are shown in Figure 11.

3.3. Simulation of Interferogram

The principle of interferogram is that the shift of the stripe is proportional to the
difference of density. Hence, in two-dimensional flow, with appropriate
parameters, the shift of the stripe becomes,

AN= N;(x,y)+ Fi(g - 1) (16)
where F; is sensitivity of the interferogram system and shows how much difference

of density corresponds to one stripe width. Density is normalized by freestream
value for simplicity and denoted by 5. One problem to generate interferogram
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(a)

(b)

Figurz 11 Shadowgraph of unsteady supersonic combustion around an axisymmetric blunt body (a)
Experiment (Lehr (1972)). (b) Simulated result (Matsuo ez al. (1991)).

image by a computer is that the obtained values are not colours nor lightness but
the drifts of stripes. Since the fraction of AN corresponds to the dark and bright
pattern, the lightness at the grid points can be calculated with the fraction of AN.
However, the CG technique of a linear RGB interpolation within a grid, which is
used for Schlieren photographs and shadowgraphs collapses when two or more
stripes exist in one grid. For example, when ANj ¢ = 0.0 and AN; 41,k = 2.0, which
means that there are two stripes between (j,k) and (j+ 1,k), a linear RGB
interpolation results in a flat colour paint inside the grid and does not paint two
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Figure 12 Unsteady shock wave in circular bend (Fursenko ef al. (1991)) (a) Experimental
interferogram pattern (b) Simulated interferogram pattern with computed result.
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stripes. One can take more exact ways to paint it but it might take much longer
CPU time. Simple interpolation may be sufficient when the grid spacing is fine
enough or the interval of stripes is relatively large to the grid spacing, such that
|ANj+16— ANj«| < 1.0. Thus the simple interpolation is used here, although
image at the region of strong density gradient, such as shock wave, cannot be
exactly re-generated. ‘

An unsteady flow field within a circular bend into which an incident shock wave
passes through (Fursenko ef al. (1991)) is taken as an example. Figure 12(a) shows
interferogram pattern in the experiment and Figure 12(b) shows the simulated
interferogram with the corresponding computed result. Since the number of grid
points is large enough (1025 x 300), the obtained image is sufficiently resolved.

In three-dimensional flow, the differences of density are integrated along the ray
as,

L
AN=Ni(x,y) + F,-(S 5 dz— 1) (16)’
0

3-D Interferogram Pattem

2-D Interferogram Pattern
{ Symmetry Plang!

Figure 13 Simulated interferogram with computed result (Tamura ef al. (1990a)) (a) Three-dimensional
(b) Two-dimensional (symmetry plane).
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The numerical integration is the same as Schlieren photograph and for one
tetrahedron,

Pt =% {Bin + Poud] X It amn

and as a result,

L
5 pdz= 2] p
t

0

A three-dimensional example is a simulated interferogram pattern of a supersonic
flow around a zero angle-of-attack cone and simulated two-dimensional
interferogram pattern within symmetry plane is presented for comparison (Tamura
et al. (1990a)), as shown in Figure 13.

3.4. Errors of Numerical Integration

In the case of three-dimensional simulations, errors tend to be accumulated because
of the numerical interpolation and integration. Thus the accuracy of the numerical
integration is evaluated in this section. Note that the error in this context is different
from that of flow simulations. In the case of CFD, the values of computed results
themselves are important, but in the case of visualization, what finally obtained are
images. Thus the error to be discussed here is how different analyticaliy and
numerically integrated images look and it is enough so far as these images look the
same.

The images obtained by the analytical and numerical integration of a certain
density distribution given by an analytical function are compared. The density
distribution over the cone is given by an analytic (although not physical) function
as,

O0<r<xtané

P1 :
p= p2+(pl—p2)£—:—)—(6lan—0:xtan9<r<xtan0+8 (18-1)
p2 : xtan0+6<r
00 : O0<r<xtané
g_fc= —(m-—pz)tan =const. : xtan 0 r<xtanf+48 (i8-2)
0 : xtan§+6<r

where r= [yZ + 22, 0 is shock angle, & is width of shock wave. From Figure 14,
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Z

x- tan O
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Figure 14 Density distribution testing numerical integration error.

density gradient in x direction by the analytical integration yields,

- tan
[ sar=-to-o B0 (19)
Jortan 8+ 8y — 2% — [x? tan® 9 - z*: 0<z<xtan §
Al = Jixtan 0+ 68) ~ x* : xtanf<x<xtanf+5
0 : xtan 0+ 86 <2

Figures 15 show the colour Schlieren pictures of density gradient obtained by the
analytical and numerical integrations. The number of grid points is 51 x 36 % 51.
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‘Analytically Calculated Pattern Numerically Computed Pattern
(@ (®)

Figure 15 Error estimation of .three-dimensional schlieren simulation (Tamura et al. (1990a))

(a) Obtained by analytic integration (b) Obtained by numerical integration. (See color plate III af the
back of this issue.)

No difference can be recognized and the errors are negligible at least in this
particular case.

4. NONLINEAR EFFECT OF DEFLECTION OF LIGHT
4.1. Estimation of Deflection of Light

In the second chapter, the light path is considered to be straight under the
assumption that the deviation of density is small and thus the deflection angle is also
small. When the deviation of density is relatively large and the light path is bent,
the deflection of the light path Ay becomes (Figure 16),

Ay=tan ¢ Az
Strictly speaking, dp/dy in equation (3) is a function of y. However, dp[dy is

considered to be a sort of an averaged value here and thus constant for the order
estimation. Then Ay can be integrated as,

_ __(B 2"
y= S tan ¢ dz = (n ay) log | cos ¢ | (20)
A density gradient
y Ay l r. direction of ray
________,,_--—T/ \ o
z < »
Az

Figure 16 Non-linear distortion of ray.
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When dp/dy is taken to be order of i, using 8 ~ 0.0003,

z~1 y~15%x10"*

z~10  y~1.5%10"2

The length z can be considered as a distance of the test section in the lateral
direction where density varies and z ~ 1 means that the object is three-dimensional
and the scale of the region where density varies is about representative length at
most. In this case, y ~ 1.5 % 10™* and this non-linear effect is negligible. On the
other hand, when flow is two-dimensional, the light possibly goes all the way
through shock waves or boundary layers. In such a case, the deflection of light will
be 1 percent- or more.

4.2. Effect of Deflection of Light Path

In the case of Schiieren photographs, images are not distorted when the screen is
exactly on the focal point. This is true when the light path is bent linearly. When
the light is deflected non-linearly, not only the image shifts within a screen (the rate
of shift is almost proportional to the deflection of light) but the focal point is
drifted (Figure 17). When the focal point shifts, or the screen is not on the focal
point from the beginning, the effect similar to shadowgraph is observed. In other
words, higher- and lower-intensity region appears near regions of strong density
gradients even without the knife edge. This effect is not obvious in a monochrome
Schlieren picture using a knife edge because the lightness of the regior is initially
high or low enough to hide the effect. Even so, the brighter region just before the
bow shock can be observed in Figure 18 (Van Dyke (1982)) and the cause might be
this “shadowgraph” effect.

This is more obvious in the case of colour Schlierens. In these cases, the lightness

Object Object )
€
= o S rreesemnt - SN, £ et £ Sty 1( .
image formation . l .
point image formation
point
focE al distanice focal distarice

Linear Deviation Non-linear Deviation

Figure 17 Drift of focal point by non-linear effects.

_65__



EXPERIMENTAL VISUALIZATION METHODS

P A B

ol
kg8

74

ey

Figure 13 Example picture of Schlieren photograph which shows non-linear effects of deflection of light,
Van Dyke (1982).

of the screen is ideally uniform since all of the light goes through the filter. When
the light deflects too much, the light might illuminate the outside of the filter and
the lightness on the screen might decrease. At least, no brighter regions must appear
theoretically. However, Figure 9(a) shows a brighter region just after the shock
wave, and dark-and-bright regions along the sting as if it indicates the density
gradient which must not be captured with this filter alignment. In summary, one
major non-linear effect of Schlieren photograph is the lightness deviation of
“shadowgraph” effect.

Figure 19 shows the picture following the discussion above. The flow field is the
two-dimensional supersonic intake (Kuroda et al. (1991)) presented in the previous
section. Here hue H is followed by equation (11) and equation (15) gives the

intensity which is constant in linear case.
Non-linearity of the deflection of light hardly affects the distortion of whole

images since it is quite local and the rate of distortion is several percent at most.
More than that, in colour Schlieren photograph, the deviation of lightness similar
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Figure 19 Effect of drift of focal point for simulated colour schlieren (a) Linear (b) Non-linear. (See
color plate IV at the back of this issue.)

to shadowgraph caused by the drift of fncal point changes the impression of the
images. It might be important that the cause of the darkness near the shock wave
could be “shadowgraph” effect and not be the out-of-range of the filter.

In the case of shadowgraphs, this non-linear effect, which shifts the practical
focal point, is not so important as in the case of Schlieren photographs since the
screen is located out of the focal point initially.

5. CONCLUDING REMARKS

From the viewpoint of comparisons with experiments, a method to simulate
experimental visualization as postprocesses of computations is described. The
present method enables more accurate comparisons between experiments and
computations.

Postprocess has another purpose, that is to analyse computationally simulated
flow fields. The method discussed here is useful for this purpose. Fictures in
experiments such as Schlieren photograph is more familiar to us than the density
contours and make us understand the flow fields more intuitively. For instance, flow
features such as shock waves, expansion waves and shear layers are ambiguous in
density contours (Figure 5(c)), but these features are highlighted in Schlieren
photographs.
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Considering non-linear effect of the deflection of light is important for the
comparison with experiments. Although each experiment practically has its own
error factors and it is difficult to reproduce them perfectly, the knowledge of non-
linear effect is helpful to discuss the flow fields from the visualized images.
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