저주파 진동 감쇠를 위한 PSS와 TCSC의 협조 제어

김태현*, 서창환*, 문경심*, 손명철*, 이상현*, 박은균*, 문승일**,
*서울대학교 전기공학부, **경북대학교 전기공학과

THE COORDINATED CONTROL OF TCSC AND PSS TO IMPROVE POWER SYSTEM DAMPING

T. H. Kim, J. C. Seo, K. S. Moon, K. M. Son, S. S. Lee, J. K. Park
Seoul National University
Seoul, Korea

S. I. Moon
Cheonbuk National University
Cheonju, Korea

Abstract - A study of the coordinated control of a TCSC and an existing PSS is presented when both are used to damp the low frequency oscillations. TCSC is modeled by the first order delay model. Linear quadratic Gaussian controller is used for designing PSS and TCSC supplementary controller. The performance of the proposed controllers is simulated in one machine infinite bus model. As a result, it is shown that to damp the low frequency oscillations efficiently, it is necessary to control TCSC and PSS simultaneously.

1. 서론
발전소나 송전 선로를 신설하지 않고 송전 용량을 증가시키기 위하여 유연 송전 시스템(Flexible AC Transmission Systems: FACTS)의 연구가 현재 전 세계적으로 활발히 되고 있다. 타이어소트 제어 집합 보상기(Thyristor Controlled Series Compensator : TCSC)는 그동안 가장 자주 기가로서 송전 용량 증대뿐만 아니라 저주파 진동 감쇠에도 효과가 있다고 알려져 있다.

저주파 현상에 대한 대책은 주로 저하게 제어된 격리 계통 안정기(Power System Stabilizer : PSS)을 한다. 그러나 격리의 lead-lag 보상기는 좋은 범위의 주파수에 대해서만 효과가 있었다. 본 논문에서는 높은 범위에서도 효과가 있는 LQ (Linear Quadratic) 제어 기법을 사용하였다. PSS 제어에는 효과가 적은 경우에도, 본 논문에서는 TCSC에 의한 제어를 동시에 했다.

실제의 경우 측정할 수 있는 변수도 없으므로 본 논문에서는 측정할 수 있는 변수만을 이용할 수 있는 (linear quadratic Gaussian : LQG) 기법을 이용하였다.

시간 영역 모형을 통해 PSS와 TCSC 협조 제어저주파 진동 억제 효과가 가장 크다는 것을 보였다.

2. 저주파 진동 해석을 위한 모형
저주파 진동 해석을 위한 모형의 몰락선도는 그림 1과 같다. 이 모형에서는 제차편씨로 외부에 여러가지의 기본 방정식에 의하여 표현되었다. 주기적인 미스 신호를 대상으로 하기 때문에 신경화된 방정식을 이용하였다.

저주파 진동 현상의 부가 저계 제어기를 전처리 계통 안정기(the power system stabilizers: PSS)라고 한다. 부가 저계 제어기에 주된 각은 저계 계통을 통하여 발전기의 감쇠 토크 증가시키는 것이다.

3. TCSC 모형
TCSC는 기본 신호 입력과 추가로 제어할 수 있는 부가 신호로 구성되어 있다. 반대 피드백 값의 관계를 위하여 그 값을 얻을 수 있는 정보가 제공된다. 기본 피드백 값으로부터 반대의 값 (기준 + 부가)으로의 변화는 약간의 시간이 필요하므로 이것을 시각 요소로서 모형화하였다. 본 논문에서는 TCSC의 동적 특성을 1차 지연 요소로서 모형화하였다 [3-4]. 기본 입력에 정상 상태 전력 조류를 제어하기 위하여 정확한 값이 없고, 외부에 있을 때 안정화하기 위하여 부가 입력을 제어하였다. 그러므로 TCSC 모형은 다음과 같이 할 수 있다.

\[T_cX_c = -X_c + X_{aw} + X_{op} \] \hspace{1cm} (1)

여기서
- TCSC의 임피던스
- 기존 입력
- 부가 입력을 각각 나타내고 있다.

4. 결합된 상태 방정식
TCSC와 PSS의 동적 특성을 동시에 유니버스화하기 위해서 전력 계통 모형과 TCSC 모형을 결합하여야 한다.

그림 2에 보인 것처럼 이 계통은 1개의 발전기, 부하 모선과 2개의 병렬 송전 선로로 구성되어 있다. 전력 조류 제어 능력과 저주파 진동 현상 억제 효과를 보기 위하여 병렬 선로 중 한 선로에 TCSC를 설치하였다.

그림 2 TCSC가 설치된 1기 부하 모선 모델
고유치를 얻어 보고 재어 벡터를 만들기 위하여는 상대 방정식을 선형화하여 1차 미분 방정식의 형태로 나타내어야 한다. 일반화된 상

de 방정식은 다음과 같다.

\[x = Ax + Bu \]
(2)

\[x = [\Delta u, \Delta v, \Delta \phi, \Delta \theta, \Delta \varphi, \Delta X_c] \]
(3)

\[u = [u_x, u_y]^T \]
(4)

\[A = \begin{bmatrix}
0 & u_x & 0 & 0 & 0 \\
-\frac{K_s}{M} & -\frac{D}{M} & -\frac{K_t}{M} & 0 & -\frac{K_s}{M} \\
0 & -\frac{K_t}{T_a + 1} & \frac{1}{T_a K_t} & \frac{K_s}{T_a} & 0 \\
0 & -\frac{K_t}{K_a T_a} & \frac{K_s}{K_a} & -\frac{1}{T_a} & -\frac{K_s}{K_a} \\
0 & 0 & 0 & 0 & \frac{1}{T_c}
\end{bmatrix} \]
(5)

\[B = \begin{bmatrix}
K_a \\
T_a \\
0 \\
\frac{1}{T_c}
\end{bmatrix} \]
(6)

\[K_s = \frac{\partial T_c}{\partial X_c} \frac{\partial l_i}{\partial X_c} \]
(7)

\[v_i = v_x^2 + v_y^2 \]
(8)

\[v_i = v_x^2 + v_y^2 \]
(9)

\[X_c \]에 대한 \(i\)와 \(v\)의 미분을 계산하기 위하여 다음과 같은 식을 유

\[\text{도한다.} \]

\[ZI = R + j(X + X_c) \]
(10)

\[Z = ZI/ZI' = \frac{ZI}{ZI} = R + jX \]
(11)

\[Z = ZI/ZI' = \frac{ZI}{ZI} = R + jX \]
(12)

\[Z = ZI/ZI' = \frac{ZI}{ZI} = R + jX \]
(13)

\[Z = ZI/ZI' = \frac{ZI}{ZI} = R + jX \]
(14)

\[Z = \sqrt{V_c^2 + V_x^2 + V_y^2} \]
(15)

\[v = v_x \cos \phi + v_y \sin \phi \]
(16)

\[v = v_x \cos \phi + v_y \sin \phi \]
(17)

\[\left[\begin{array}{c}
R \ \mathbf{X} \\
X \ \mathbf{R}
\end{array} \right] \left[\begin{array}{c}
[0] \\
[1]
\end{array} \right] = \left[\begin{array}{c}
\sin \delta \\
\cos \delta
\end{array} \right] \]
(18)

\[\left[\begin{array}{c}
\sin \delta \\
\cos \delta
\end{array} \right] \]
(19)

\[\left[\begin{array}{c}
\sin \delta \\
\cos \delta
\end{array} \right] \]
(20)

\[\left[\begin{array}{c}
\sin \delta \\
\cos \delta
\end{array} \right] \]
(21)

\[\left[\begin{array}{c}
\sin \delta \\
\cos \delta
\end{array} \right] \]
(22)

\[\left[\begin{array}{c}
\sin \delta \\
\cos \delta
\end{array} \right] \]
(23)

\[\left[\begin{array}{c}
\sin \delta \\
\cos \delta
\end{array} \right] \]
(24)

\[\left[\begin{array}{c}
\sin \delta \\
\cos \delta
\end{array} \right] \]
(25)

\[\left[\begin{array}{c}
\sin \delta \\
\cos \delta
\end{array} \right] \]
(26)

\[\left[\begin{array}{c}
\sin \delta \\
\cos \delta
\end{array} \right] \]
(27)

\[\left[\begin{array}{c}
\sin \delta \\
\cos \delta
\end{array} \right] \]
(28)

\[\left[\begin{array}{c}
\sin \delta \\
\cos \delta
\end{array} \right] \]
(29)

\[\left[\begin{array}{c}
\sin \delta \\
\cos \delta
\end{array} \right] \]
(30)

5. LQG (Linear Quadratic Gaussian) 제어기의 설계

LQG 제어기를 설계하기 위한 확률적 선형 동적 계통은 다음과 같

다 [5,6]:

\[\dot{x} = Ax + Bu + \xi \]
(31)

\[y = Cx + \theta \]
(32)

여기서 \(\xi \)는 잔도 \(Q \)를 가진 확률 전단 곡선을 의미하고 \(\theta \)는 잔도 \(R \)를 가진 확률 침강 곡선을 나타낸다. 둘 다 평균이 0인 정규 분포를 가진

stationary 확률 곡선으로 가정하였다.

가장 함수는 다음과 같다.

\[J = \mathbb{E} \left[\frac{1}{2} \int \left(x^T Q x + u^T R u \right) dt \right] \]
(33)

여기서 \(Q \)는 양의 보집단 대칭 상수 가중 행렬이고, \(R \)는 양의 보집단 대칭 가중 행렬이다.

이 경우 최적 제어 문제는 (31) 식의 제어 조건에서 가장 함수 \(J \)

를 최소화하는 제어 함수 \(u(t) \)를 찾는 문제이다.

LQG 제어기는 일반 벡터와 전 상태에 대한 제어기로 구성된다. 즉,

LQG 제어기에서는 관측 계통의 안정성을 보장하는 linear quadratic regulator(LQR)가 상태를 안정하게 추정하는 것을 보장하는 일반 벡

터를 이용한다 [5].
LQG 제어기의 동작성은 다음과 같다.
\[
\dot{x} = Ax + Bu + H(y - CE) \\
u = -Gx
\]
여기서 \(x\)는 추정된 상태 변수이다.

식 (35)에서 본 것처럼 LQG 제어기는 실제 제어기 구성에 있어 성능에 불량적인 상태 변수가 있을 수 있으므로, 실제 신호 \(y(t)\) 대신 추정된 상태 \(\hat{x}(t)\)을 채턴한다. 그러므로 LQG 제어기는 채널할 수 있는 변수만을 이용해서 구현할 수 있다.

분리 이론에 의하여 필터 이득 행렬 \(H\) 와 제어 이득 행렬 \(G\) 를 독립적으로 결정할 수 있다.
필터 이득 행렬 \(F\)는 다음과의 필터 대수 Ricami 방정식에서 구한다.
\[
AP + PA^T + \Xi - PCQ^T \Theta^T C^T P = 0
\]
\(H = PCQ^T \Theta
\)
계어 이득 행렬 \(G\)는 다음과의 계어 대수 Ricami 방정식에서 구한다.
\[
KA + A^T K + Q + KBR + B^T K = 0
\]
\(G = K B^T K
\)

6. 이상 제어기의 설계
오늘날 마이크로 프로세서의 혁신 속도와 적은 크기 때문에 대부분의 제어 시스템은 디지털 기술을 이용하여 구현되고 있다.
디지털 설계에는 두 가지 접근법이 있다. 즉, 연속 제어기 재설계원과 직접 이상 시간 설계법이 그것이다. 후자는 정적 보다 정확한 성능을 보임 뿐만 아니라, 다른 병렬적인 기간을 허용한다. 따라서 본 논문은 이상 LQG 제어기를 설계할 때, 직접 이상 시간 설계법을 사용하였다.
그림 3은 전체 제어시스템의 설계도를 나타낸다.

![그림 3 전체 제어시스템의 설계도](image)

이상 LQG 제어기를 설계하기 위해서는 필터 이득 행렬 \(H\)와 제어 이득 행렬 \(G\)의 계산이 필요하다. 그러나 이 계산들은 오프라인으로 미리 계산하기 때문에, 큰 라인 디지털 제어기는 단지 행렬간의 과정 수행 후에만 제약을 붙여야 한다. 계산은 제어기 구성을 위해 필요한 전산계 통의 출력력에 대해 한번씩 검출되는 팔이기 속도를 가정하였다. 즉 이상 LQG 제어기는 1주기에 한 번 새로운 제어신호를 전산계 통에 보내 제어한다. 이정도의 계산량은 현재 이용가능한 digital signal processor(DSP)에 의해 충분히 수행될 수 있다.

7. 시간 영역 모형
제한된 제어기의 저주파 전동 현상을 효과적으로 제어할 수 있음을 확인하기 위해 비선형 계통을 이용한 시간 영역 모형을 했다. 비선형성은 제어기의 회기, 최소, PSS, TCSC의 제한기 등을 포함한다. 회기로는 TCSC가 없는 선도내의 제어기의 2주기 3상 저차 사고를 모의하였다.
그림 4는 TCSC 또는 PSS의 단독 제어보다 TCSC와 PSS의 협조 제어가 좋다는 것을 보여 주고 있다. 그림 5와 그림 6에서 보면, 3상 사고가 실 이상 TCSC 제어기 싱크가 포함되어져서 저주파 전동 현상이 잘 감지되는 것을 알 수 있다.

Reference