The Improvement of the transient Response Using the Switching Property of Multiple Control Systems.

H. C. Rhee
Dept. of Electrical Engineering, Daejin University

Abstract
A well-known problem in adaptive control is the poor transient response which is observed when adaptation is initiated. This paper proposes a useful method to improve the transient response of adaptive control systems by using multiple models of the plant and switching mechanism by fuzzy inference. The models are identical except for initial estimates of the unknown plant parameters. The control input to be applied is determined at every instant by the model which best approximates the plant. Simulation results are presented to indicate the performance improvement of adaptive control systems using the proposed method.

1. 서론
실형시스템에 대한 작용제어의 설계문제는 최근 10여년 동안 활발히 연구되고 있다[1]. 그러나 기존의 작용제어 알고리즘의 정정상태에는 제어목표를 거의 달성할 수 있지만, 과도상태에 대해서는 야외로 보장도 못하하고 있는 형편이다. 이는 초기 예상보다 종종 요구하는 원정에 달하는 것이다. 이하 같은 문제를 해결하기 위한 방법으로 다음과 제어를 이용한 작용제어기 설계를 본 논문에서 다루고 한다. 즉 종래의 하나의 플랜트에 대하여 하나의 제어기만 사용하는 것을 여러 개의 제어기로 자유롭게 조정하는 것이다. 각 제어기의 구조는 갱신하지만 초기의 파라미터 값은 다르게 하므로 선택의 폭을 넓혀하는 것이다. 따라서 하나의 제어기만 사용하여 제작제게를 업시다시피 계속 이전 제어기를 사용하는 것이 훨씬가 나타나 빌라 하기 보다는 넓어 상당 부분을 갖추는 제어기로 전환하고, 계속 작동을 수행하므로 제어기의 성능을 정상시키는 것이다. 다음으로 시스템에서의 무한히 짧은 세션정을 요구하지는 않는로 주변구조로 간제없이 전체 시스템의 안정상은 증가될 수 있기 때문에 안정성을 보다는 성능개선을 위한 전문정 주조를 실현할 수 있다[2,3]. 그러나 때론간에 제어기를 이용해 결정하는 지에 대한 무한한 방법이 있기 때문에 즉 결계하기 사용된 제어기로부터 어떤 기준에 따라 다른 제어기의 전환을 결정할 것인가하는 것이 중요한 문제가 된다. 따라서 본 논문에서는 어느 순간에 심박도가 작은 토대로 제어하기 위한 플랜트를 정해 주어 사용하여 어떤 제어기로 스위칭 할 것인가에 대해 결정하고자 한다[4,5]. 제시한 알고리즘의 효용성을 보이기 위해 컴퓨터 모의 실험을 통해 과도상태 성능을 개선 부분을 보인다.

2. 간접적응제어기
2.1 플랜트의 파라미터화

프랜트의 전달함수는 \(W_p(s) = k_p \frac{Z(s)}{R(s)} \) 이다. 여기서

\(k_p \)는 0이 아닌 상수이며, \(R(s) \)와 \(Z(s) \)는 각각 \(n \times m \)차원의 다항식 \((n > m)\)。

작용제어기를 설계하기 위해 다음과 같은 플랜트에 대한 가정이 필요하다.

1) 플랜트의 차수 \(n \)을 알고 있다.
2) 플랜트의 상태차수 \((n - m)\)을 알고 있다.
3) \(k_p \)의 부호를 알고 있다.
4) \(R(s) \)와 \(Z(s) \)는 서로소이다.
5) \(Z(s) \)는 안정적인 다항식이다.

한정한 간접적응제어기 구현하기 위해 플랜트에 대한 설계한 파라미터표범이 필요하다.[1]의 표기법에 따라 플랜트 파라미터를 다음과 같이 나타낼 수 있다.

\[
\beta^* = (\beta_{0}^*, \beta_{1}^*, \beta_{0}^*, \alpha_{0}^*, a_{1}^*)^T \in R^n, \\
\beta_{0}^* \in R, \beta_{1}^* \in R^{n-1}, \alpha_{0}^* \in R, a_{1}^* \in R^{n-1} \quad (1)
\]

플랜트의 응답은 다음과 같다.

\[
y_p = W_m(s) (\beta_{0}^* u + \beta_{1}^* w_1 + \alpha_{0}^* y_p + a_{1}^* \alpha_1) \\
= W_m(s) (\rho^T w) \quad (2)
\]

여기서 \(w = (u, w_1, y_p, w_2, \ldots)^T \)이고, sensitivity functions \(w_1 \in R^n, w_2 \in R^{n-1} \)는

\[
\dot{w}_1 = \Lambda w_1 + u, \\
\dot{w}_2 = \Lambda w_2 + y_p \\
\dot{w}_3 = \Lambda w_3 + y_p, \\
\cdots
\]

여제 \((\Lambda, D) \)는 \((n-1)\)차원 controllable pair이다. \(D \)는 안정하고, \(\Lambda \)의 특성다항식 \(\lambda(s) \)는 다음을 만족한다.

\[
\lambda(s) = \lambda_1(s) Z_m(s) \quad (4)
\]

여기서 \(\lambda_1(s) \)는 \((n-1)\)차원monic Hurwitz 다항식이다.

식 (1), (2), (3), (4)로부터

\[
\beta_0^* = \frac{k_p}{\lambda_0^*} \\
\]

이므로, \(\beta_0^* \)와 \(a_0^* \), \(a_1^* \)은 Bezout identity
\[R_s(\theta) + k_p Z_p(\theta) \sigma(\theta) = (k_s/k_w) Z_p(\theta) R_s(\theta) \lambda(\theta) \]
로 두어 정의된다.
\[\beta_0 + \beta_i^T (\theta - \lambda) - I = \beta(\theta) / \lambda(\theta) \]
이고
\[\alpha_0 + \alpha_i^T (\theta - \lambda) - I = \sigma(\theta) / \lambda(\theta) \]

그림 1. 폴렌트 파라미터 표기법.

2.2 식별기의 구조
폴렌트 출력에 대해 보다 유용한 표현을 얻기 위해서 다음
과 같은 관계를 이용한다.
\[y(\theta) = \beta_0^T u + \beta_i^T w_i + \alpha_0^T y + \alpha_i^T w = \rho^T w \]
\[\bar{u} = W_u(\theta) u \quad \bar{w} = W_u(\theta) w_i \quad \bar{y} = W_u(\theta) y \quad w = (u, w_i, y, \bar{w})^T = W_u(\theta) \bar{w} \]
적.병렬형식의 식별기 구조는 위와 같은 다음과 같이 볼 수 있다.
\[\bar{y}(\theta) = \beta_0^T u + \beta_i^T w_i + \alpha_0^T y + \alpha_i^T w = \rho^T w \]
여기서 \(\gamma(\theta) \)는 폴렌트의 출력의 추정치이다.

그러므로 \(\rho = (\beta_0, \beta_i, \alpha_0, \alpha_i)^T \)는 식별파라미터 벡터로 \(\rho^* \)의 추정치이다. \(\rho_t(\theta) - y(\theta) \)는 식별오차 차이고 파라미터 오차들은 \(\dot{\rho} = \dot{\rho}_0, \dot{\rho}_i, \dot{\alpha}_0, \dot{\alpha}_i \)
\(\dot{\rho}_0 = \dot{\rho}_0 - \dot{\rho}_0, \quad \dot{\rho}_i = \dot{\rho}_i - \dot{\rho}_i \)
\(\dot{\alpha}_0 = \dot{\alpha}_0 - \dot{\alpha}_0, \quad \dot{\alpha}_i = \dot{\alpha}_i - \dot{\alpha}_i \)와 같이 정의된다.
따라서 식별오차
\[\varepsilon_i = \rho_i^* - \rho_i \]
을 얻을 수 있고 \(\hat{\rho} = (\beta_0, \beta_i, \alpha_0, \alpha_i)^T \)
여기서 식별범위를 \(\rho^* \)를 결정하도록 주어야 한다.

2.3 제어기의 구조
안정 폴렌트의 파라미터 벡터 \(\rho^* \)를 얻으면 (1)식으로부터 파라미터는 다음과 같이 얻어진다.
\[u = \theta^T \mathbf{w}(\theta) \]
여기서 \(\theta = (k_s, \theta_i, \theta_0, \theta_i^2)^T \in \mathbb{R}^4 \)이고 각 파라미터는 다음과 같다.
\[k_i = 1/\beta_0 \quad \theta_i = -\beta_i/\beta_0 \quad \theta_0 = -\alpha_0/\beta_0 \]
\[\theta_i^2 = -\alpha_i/\beta_0 \]
이고
\[\mathbf{w} = (\mathbf{r}, \mathbf{w}_i, \gamma, \mathbf{w}_2)^T \]
실제로는 \(\psi \)의 미지어로
\[u = \theta^T \mathbf{w}(\theta) \]
이 된다. \(\theta = (k, \theta_i, \theta_0, \theta_i^2)^T \)는 제어파라미터 \(\theta \)
의 추정치이다.
\[e_c(t) = y(t) - y_c(t) \]

여기서 \(y(t) \)는 제어 파라미터의 오차 \(\theta = \theta - \theta \)
이 있다.

2.4 식별기와 제어기 파라미터의 전산
\(\varepsilon_i \)와 \(\varepsilon_c \)는 식별오차와 제어오차를 나타내며 \(\hat{\rho} \)와 \(\hat{\theta} \)는 식별파라미터와 제어파라미터의 오차를 나타낸다. 식별파라미터 \(\hat{\mathbf{X}}(\theta) \)는 적응변화에 의해 동적으로 유행하여 \(e_\theta(t) \)
가 작지되지 않고 제어파라미터 \(\theta(t) \)를 개별 결정할 수도 있으므로 이때는 \(\hat{\mathbf{X}}(\theta) \)가 폴렌트의 참인 파라미터 벡터라는 가정이

\[k = k - \text{sgn}(\rho_a) \epsilon_a \]
\[k_1 = k_1 - \text{sgn}(\rho_a) \epsilon_a \]
\[k_2 = k_2 - \text{sgn}(\rho_a) \epsilon_a \]
여기서
\[\mathbf{N}(\theta) = 1 + \mathbf{w}(\theta)^T \mathbf{w}(\theta) \]
\[v(\theta) \rightarrow 0 \quad e_\theta(\theta) \rightarrow 0 \]
여면서 전체 시스템은 근사적으로 안정화된다.
3. 다중제어 시스템의 과도 응답 계선을 위한 스위칭 구조

그림 2. 다중제어시스템

그래 2는 다중모델을 사용한 전차 시스템에 대한 구조다. 여기서 제어시스템은 N개의 동일한 간절 적응 제어기들로 구성된다. 특히 동일한 구조를 갖는 N개의 식별기들은 초기에 다른 초기 조정치를 설정한다. 이들 각각의 식별기에 대응하는 제어기 C_이는 플랫폼에 대한 입력으로서 사용될 수 있 는 후보 제어입력 U_이를 출력한다. 안정도 증명에 의하면 permissible switching 구조를 사용하면 전차 시스템의 성능은 유계가 된다[2,3]. 그래서 과도상태의 성능을 개선시킬 수 있는 스위칭 구조의 설계에 관심이 집중된다. 과도 응답 특성에 관한 성능은 수학적으로 잘 정의되어 있지 않았기 때문으로 설계적인 견지에서 일반화된 근거를 토대로 정의되어야 한다. 간절적 제어시스템에서는 필연적 모의실험계에서 운 동량의 식별모델이 바탕으로한 제어가 더 좋은 성능을 줄 수 있다고 생각된다. 따라서 과도상태에서 플랫폼과 식별기 출력사이의 오차 e_이가 큰 값의 가정에 따라 플랫폼과 기준모 덴 출력사이의 오차 e_이가 따라서 치질을 알 수 있다. 이러한 성질로 부터 식별모델과 계통으로의 계로 제어기 구조가 진정 될 수 있다. 그러나 식별모델들의 이상한 변동성을 사용하기 위한 성능이 되지 않아 주의가 필요하다. 그래서 기존의 스위칭 구조의 진정도는 다음과 같이 정의할 수 있다.

\[J = ae^2(0) + \beta \int_0^\tau e^2(t) dt \quad \text{(3)} \]

\(e_\text{이} \)의 근거는 순간적이며 정기적으로 정의한 수정량을 제공하는 주요한 제어 요소가 존재할 때 스위칭 동작을 계대로 하지 못하는 경우에 있다. 따라서 본 논문은 제시한 식별기의 성능에 대한 제 조건문의 경우에 정적인 위기제어를 바탕으로 인간의 의사 결정을 모방한 최적 기회를 스위칭 구조에 도입하여 결정하게 하고자 한다.

식별기의 현재 오차 e_이와 미래의 변화량 e_이를 [1-1]로 근 거하고, 그 값이 기지 조건부 소속수(PB, PM, PS, ZD, NS, NM, NB)에 포함된다면, 그에 따라 if-then 형태의 40개 이상의 제어규칙을 얻을 수 있으며, 성능지수 J는 다음과 같이 정의될 수 있다.

\[h_\text{이} = \min\{a_{\text{i},A}(e_\text{i}) + h_{\text{B}}(e_\text{i})\} \quad (17) \]

\[J = \frac{1}{\tau} \sum_{t=1}^{\tau} L_\text{D} + \beta \sum_{t=1}^{\tau} e_\text{i}^2(t) \quad (18) \]

여기서, \(u_{\text{A}}(e_\text{i}) + u_{\text{B}}(e_\text{i}) \)는 \(e_\text{i} \)값의 연속적 변수 값에 소속하는 영역을, \(h_\text{B} \)는 \(e_\text{i} \)에 대한 \(L_\text{D} \)의 적합도를 나타낸다. Sugeno 방식[6]의 규칙을 이용하여 \(L_\text{D}(\text{i}) = (1), M(=0.8), S(=0.6), Z(=0) \)의 값은 표 1과 같다.

표 1. 제어 규칙 작성표

<table>
<thead>
<tr>
<th>e_i</th>
<th>e_i'</th>
<th>NB</th>
<th>NM</th>
<th>NS</th>
<th>ZO</th>
<th>PS</th>
<th>PM</th>
<th>PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>NM</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>M</td>
<td>M</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>NS</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>S</td>
<td>S</td>
<td>M</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>ZO</td>
<td>B</td>
<td>M</td>
<td>S</td>
<td>Z</td>
<td>S</td>
<td>M</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>PS</td>
<td>B</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>PM</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>PB</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
</tbody>
</table>

미지수를 과정을 통해서 나온 성능지수 J는 N개의 식별기 모델에서 각각 나오게 되어 아래 각 순간 식별오차가 가장 작 은 J값을 선택하게 된다. 이는 모든 식별기들이 하나의 플랫 브를 근사시켰다는 의미가 되어 그의 식별기에 대응되는 제어기 C_이는 후보 제어 입력 U_이를 제공하게 된다.

4. 모의실험 결과

본 논문에서는 제시한 알고리즘의 효용성을 보이기 위해 시뮬 련에서 사용된 플랫폼과 기준모델은 다음과 같다. 제어 대상인 플랫폼의 전달 함수 \(H(s) = K(s) = (s + a_1 + a_2) \)이며, 여기서 미지의 파라미터 \(K_1, a_1, a_2 \)은 알고 있는 compact set \(S = (0.5 \leq K_1 \leq 2.0, -0.5 \leq a_1 \leq 3.4, -2.0 \leq a_2 \leq 2.0) \)에 존재한다. 제어목적은 기준입력 \(r(t) \)에 대한 기준모델 전달함수 \(H_m(s) = 1/(s^2 + 1.4s + 1) \)의 출력을 추적 하는 것이다. 기준입력 \(r(t) \)은 초기 10s 단위 구간이며, 전철적인 기저 형태의 프리보드에 대해 적용하게 된다. 다중모 덴은 각각의 수치에 대해 N=1과 N=27의 모델을 사용하고 아래 각 경계에 대한 초기 조정치는 S개의 각각의 파라 미터들의 구간은 3개로한 각각에 해당한다.

그림 3은 모의실험에서 전달하는 플랫폼 \((K_1, a_1, a_2) \) = (0.5, -0.5, 2)의 파라미터를 갖는다. 그림 4는 모의실험 확장 단위 구간의 모델에 대해 파라미터 구간 \((K_1, a_1, a_2) \) = (0.5, 0.5, -2)로 갖는다. 그리고 그림 5는 "스위칭"을 적용하고 전달하지 않는 플랫폼에 대해 파라미터 구간 \((K_1, a_1, a_2) \) = (2, 3.4, 2.14)로 갖는다. 결과적으로 그림 3-5의 경우 본 논문에서 제시한 스위칭 함수의 성능에 따른 문법과의 과도 응답 특성이 단일 모델을 사용하는 경우보다 N=27개의 다중모델을 사용하는 경우가 개선됨 보였다. 그림 6은 시변 플랫폼에 대해 적용하였다. 시간에 따른 파라미터 변동은 100초마다 \((K_1, a_1, a_2) \) = (2, 3.4, 2), (2, 0.5, 0), (3, 0, 0), (0.5, 0, -25)가 완료하였으나. 그 결과 N=1의 단일 모델은 사용함을 해보다 N=27개의 모델을 사용한 경우에 시스템 성능이 우수함을 보였다.
5. 결론

작용세어 시스템의 과도응답을 개선시키기 위해 다중 모델과 제한된 스위칭 구조를 사용하였다. 제한된 알고리즘은 예측상황에 따라 인간의 사고 방식을 모방한 피드백 기법을 이용하여 성능지수를 결정한 후 이에 따라 적절한 제어기가 선택되는 스위칭 구조로 하였다. 그 결과 시스템 성능은 개선됨을 보였으며 또한 플래트에 감각스런 반응에 대해 강한함을 레조니 모델을 통해 보였다. 앞으로의 과제는 파라미터를 제한하는 범위에 관한 연구가 요구된다.

* 이 논문은 1995학년도 대전대학교 학술연구이

참고문헌

그림 4. 불안정하면서 진동하지 않는 플래트에 대한 응답 특성

그림 5. 정적 안정하고 진동하지 않는 플래트에 대한 응답 특성

그림 6. 시변 플래트에 대한 응답 특성