MULTISPECTRAL IMAGING APPLICATION FOR FOOD INSPECTION
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ABSTRACT

A multispectral imaging system with selected wavelength optical filter was demonstrated feasible
for food safety inspection. Intensified multispectral images of carcasses were obtained with
visible/near-infrared optical filters (542 - 847 nm wavelengths) and analyzed. The analysis of
textural features based on co-occurrence matrices was conducted to determine the feasibility of a
multispectral image analyses for discriminating unwholesome poultry carcasses from wholesome
carcasses. The mean angular second moment of the wholesome carcasses scanned at 542 nm
wavelength was lower than that of septicemic (P < 0.0005) and cadaver (P < 0.0005) carcasses.
On the other hand, for the carcasses scanned at 700 nm wavelength, the feature values of
septicemic and cadaver carcasses were significantly (P < 0.0005) different from wholesome
carcasses. The discriminant functions for classifying poultry carcasses into three classes
(wholesome, septicemic, cadaver) were developed using linear and quadratic covariance matrix
analysis method. The accuracy of the quadratic discriminant models, expressed in rates of
correct classification, were over 90% for the classification of wholesome, septicemic, and
cadaver carcasses when textural features from the spectral images scanned at the wavelength of
542 and 700 nm were utilized.
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INTRODUCTION

Machine vision and image processing techniques are useful for agricultural and food
industry applications, particularly in grading and inspection (Park and Chen 1994; Liao et al.,
1992; Steinmetz et al., 1993; Ni et al., 1993), because the majority of inspection tasks are highly
repetitive and extremely boring, and their effectiveness depends on the efficiency of the human
inspector.

In industrial situations, inspection consists of measurement or comparison of spatial
geometry with those of known patterns, i.e., spatial pattern recognition method. While spatial
imaging resolves objects into their mophological dimensions, spectral imaging resolves a
phenomenon of the interaction of light and objects to be inspected.

The multispectral images provided more information than the standard RGB color
images, because they recover more information about the variation of the spectral reflectance of
materials. The surface’s texture and reflectances at specific wavelengths can be yielded and the
sample’s size and shape can be imaged and measured as well.

Image texture has been used in image analysis for segmentation and classification. Early
studies for image texture analysis have involved autocorrelation functions (Liu et al., 1993),
power spectra, and relative frequencies of various gray levels on the unnormalized image (Park
and Chen, 1994). Gray-tone spatial-dependence matrix, so called co-occurrence matrix (COM),
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has been also used for image texture analysis for agricultural applications (Park et al., 1992;
Shearer and Holmes, 1990).

Since the image texture contains statistical information of gray level image in the spatial
domain, textural analysis may be able to classify agricultural commodities. Also, image texture
analysis is useful because texture is independent of the tone of the image. Thus, image texture
analysis is one of the most important processes in image analysis because it partitions an image
into meaningful regions. However, there has been little research for analyzing performance of
COM as a function of parameters such as angle and distance in agricultural product quality
evaluation and safety inspection.

The primary goals of this study were 1) to examine the performance of cooccurrence
matrix texture analysis method as a tool of multispectral image analysis for food inspection; 2) to
develop the linear and/or nonlinear discriminant models for poultry carcass classification.

Multispectral Imaging

Spectral Imaging involves measuring the intensity of diffusely reflected light from a
surface. The reflected light contains information about the absorbers near the surface of the
material which modifies the reflection. By using wavelengths selected across a waveband, it is
possible to construct a characteristic spectral features for the material (Muir, 1993). These
spectral patterns or images are multi-dimensions and the process of distinguishing between them
is called spectral pattern recognition.

The absorbing molecules of matter are excited to specific vibrational states or energy
levels dependent on the energy of the incoming radiation. According to quantum theory,
molecules absorb light in the visible and ultraviolet because their electrons can move to higher
energy states. Infrared light does not have enough energy to excite electrons in molecules.
Instead, excitations resulting in molecular absorption come from vibrations and rotations of
molecules. Rotational absorption bands are predominantly in the far infrared. Vibrational
absorption bands are those which involve the near infrared, which has been applied extensively
to component analysis of food and agricultural materials. The complexity of molecular
absorption can be simplified by assuming that molecules only vibrate at fixed frequencies when
excited and so only absorb light of that particular frequency or associated wavelength (Muir et
al., 1989).

Light which has interacted with a surface has penetrated just beneath the surface and
been exposed to possible absorbers and then re-emitted from the surface. As such it contains
information on the absorbers present in the material. By using a camera which can measure the
intensity of diffusely reflected light at wavelengths across a waveband it is possible to obtain the
characteristic spectral features of materials.

MATERIALS AND METHODS

Hardware

A multispectral camera (Model IMC-201, Xybion Electronic System)’ containing six
visible/near-infrared interference optical filters with wavelengths of 542, 570, 641, 700, 720, and
847 nm (each filter has 10 nm narrow bandwidth) was used. The multispectral camera had an
dynamic aperture control capability at the different spectral bands, an enhanced calibration
capability, and a sufficient sensitivity for using narrow band spectral filters to enhance

2 Mention of any company or trade name is for identification onfy and does not imply endorsement by the
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—756—



measurement accuracy. The intensified CCD imager provides significantly increased sensitivity,
which allows the use of narrow band spectral filters for better discrimination performance.

The camera had two on-board Motorola MC68HC11 microprocessors, a Sony XC-77
CCD imager with a 400-1000 nm spectral range. The imager was fiber-optically coupled to a
microchannel plate (MCP) intensifier. A Tokina AT-X lens with a variable focal length of 28 to
85 mm was used. An IBM-compatible computer with an A/D converter was used for image
capture and camera control via RS-232. The system computer was a Gateway 486 with a 50 MHz
clock speed and an 8 bit image digitizer (ImCap, Xybion Electronic System, Cedar Knolls, NJ).
Two high intensity halogen lamps (Tota T-110, Lowel-Light, Inc., Brooklyn, N.Y.) were used as
the light source to provide 248 lux (lumen/m?) of light on the object. A DC power supply
(Nobatron DCR 150-5A, Raytheon Co., South Norwalk, Conn.) was used for regulating lamp
power. A soft silver umbrella was attached to the each lamp for diffusing the light. The
multispectral imaging system used in the study was reported more detail in a previous paper
(Park and Chen, 1994).

Software

Image Processing Tools for Windows 95% software was developed at the Instrumentation
and Sensing Laboratory. This software consists of two parts. The first part is for real-time image
acquisition and the second part is for processing and analyzing spectral images. The software
provides many basic image processing functions such as converting image format, cropping the
region of interest (ROI) of the image, reading image size, enhancing linear contrast, resizing,
generating image data for texture analysis, and analyses of multispectral images. The software
utilized Microsoft C++ (Microsoft Co., Roselle, IL) compiler.

The size of an original spectral image captured by a camera was 786 x 493 (387,498
pixels). This image was reduced to a size of 254 x 240 (60,960 pixels). The intensity of each
pixel was an average of 3 x 2 template of an original image. Finally, a 64 x 64 subimage was
cropped from the reduced images. The image was first loaded into an active window, the ROI
was then specified for further processing. The ROI image was then used for generating data
ready for COM and displaying on the active window for further analysis.

Co-occurrence matrix of image texture

The co-occurrence matrix (COM) contains not only textural information but spectral
information as well. Haralick et al. (1973) presented the general procedure for extracting
textural properties of image data in the spatial domain. They computed a set of gray-tone spatial-
dependence probability-distribution matrices for a given image and suggested a set of 14 textural
features which can be extracted from each COM.

The gray-tone spatial-dependence matrix measures the probability that a pixel of a
particular gray level will occur at an orientation and a specified distance from its neighboring
pixels given that these pixels have a second particular gray level. COM is represented by the
function P(i,j,d,8), where i represents the gray level of location (x,y), and j represents the gray
level of its neighbor pixel at a distance d and an orientation of 6 from location (x,y). The eight
nearest neighbor resolution cells (3 x 3 matrix), where the surrounding resolution cells were
expressed in terms of their spatial orientation to the central reference pixel (i,)). The eight
neighbors represent all image pixels at a distance of 1. Resolution cells (i+1,j) and (i-1,j) are
nearest-neighbors to the reference cell (i,j) in the horizontal direction (8 = 0°) and at a distance,
d=1. This concept can be extended to the three additional orientations (8 = 45°, 90°, and 1359).

The COM is scale invariant, i.e., the matrices would be the same if all pixels of certain
gray level in image matrix were changed to other constant value. These matrices show the
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relative frequency distributions of gray levels and describe how often one gray level will appear
in a specified spatial relationship to another gray level on each image region. Because there are
eight nearest neighbors for each pixel, there exist many different co-occurrence matrices from the
same gray-tone image based on direction and distance from the reference cell for each image
region. In this study, the textural features were calculated from the co-occurrence matrix when
8=0° 45°,90°, 135° and d=1, 2. For more detail about COM, see Park and Chen (1996).

Textural features

Angular Second Moment (f}) is a measure of homogeneity of the image and can be
calculated from the normalized COM. The higher value of this feature means that the amplitude
or intensity changes less in the image and results in a co-occurrence matrix is much sparser.

Contrast (f;) measures local variation in the image. Higher contrast value indicates high
amount of local variation. Correlation (f3) is a measure of linear dependency of intensity values
of an image. For an image with large areas of similar intensities, correlation will be much higher
than for an image with noisier, uncorrelated intensities (Shearer and Holmes, 1990). Variance
(f,) indicates the variation of values of image intensity. For an image whose all pixels have the
same intensity, the variance would be zero. The inverse difference moment (fs) was used as an
another feature of image contrast.

Other textural features calculated for this research were sum average (f;), sum variance
(f1), sum entropy (f3), entropy (fy), difference variance (fio), and difference entropy (f;;). Sum
average and sum variance are the average and variance of normalized gray-tone image in the
spatial domain, respectively. The sum entropy is a measure of randomness within an image and
entropy is an indication of the complexity within an image. The more complex an image, the
higher entropy value. The difference variance is an image variation in a normalized gray-tone
spatial-dependence matrix. The difference entropy is also an indication of the amount of
randomness in an image.

Discriminant Analysis

The discriminant analysis can be useful to find a discriminant function for guessing to
which class an observation belongs, based on knowledge of the quantitative variables and a set of
linear combinations of the quantitative variables. Linear or quadratic discriminant functions can
be used for data with approximately multivariate normal within-class distributions. The
performance of a discriminant function can be evaluated by estimating error rates (probabilities
of misclassification). The error rates can also be estimated by cross-validation.

Discriminant functions classify observations into two or more groups on the basis of one
or more quantitative variables. When the distribution within each group is assumed to be
multivariate normal, a parametric method can be used to derive a linear or quadratic discriminant
function. The discriminant function is determined by a measure of generalized squared distance.
The classification criterion can be based on either the individual within-group covariance
matrices (quadratic function) or the pooled covariance matrix (linear function). Each observation
is placed in the class from which it has the smallest generalized squared distance. This method
also computes the posterior probability of an observation belonging to each class.

The squared distance from x to group ¢ is

&)= (s=m) V(= m)
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where, x = p-dimensional vector containing the quantitative variables of an observation, ¢ =
subscript to distinguish the groups, ¥, = S, for quadratic model, or ¥, = § for linear model; S, =
covariance matrix within group ¢, S = pooled covariance matrix

The probability of x belonging to group ¢, by using Bayes’ theorem:
pldx)=q.£,(x)/ f(x)

where, f(x) is the group-specific density estimate at x from group ¢, and f (x) = Z, q, f,(x) is

the estimated unconditional density at x.

The group-specific density estimate at x from group ¢ is then given by

£,(x) = 2x) %, * exp(-054%(x))
Using Bayes’ theorem, the posterior probability of x belonging to group ¢ is

_af(x)
=56

The generalized squared distance from x to group ¢ is defined as
D}(x)=d;(x)+ & (1) + £.(t)
where,

g ()= (£) =0 for linear model; and g, (= —-210ge(q,) if

the prior probabilities are not all equal, or g, (t) = () if the prior probabilities are all equal

The posterior probability of x belonging to group ¢ is then equal to

exp( -0.5D} (x))

Plilx)= > exp(—O.SDj (x))

An observation is classified into group u if setting 7 = u produces the largest value of p(¢|x) or the
smallest value of D} (x) .

Application for Poultry Inspection System

A total of 142 chicken carcasses, 44 wholesome, 40 septicemia, and 58 cadaver, were
obtained from poultry processing plants on Maryland's Eastern Shore and West Virginia in
January and July, 1993, respectively. The conditions of these carcasses were identified by the
USDA Food Safety and Inspection Service (FSIS) veterinarians on the plant site. The carcasses
were separated based on the condition of condemnation and placed in plastic bags to minimize
dehydration. Then the bags were placed in the coolers filled with ice and transported to the
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Instrumentation and Sensing Laboratory located at Beltsville, Maryland to perform the
multispectral image measurement. At the laboratory the chickens were stored in a 0 °C cold
room for 15 hours prior to the experiments.

Procedure

Chicken carcasses were hung on a shackle. Diffused light from a pair of tungsten
halogen lamps was projected on the carcasses. Images of the carcasses were taken using the
multispectral camera. The total response of a multispectral imaging subsystem is the function of
illuminator power, filter characteristics, sample reflectance, and detector sensitivity. These
relationships vary with wavelength, therefore, these factors were carefully considered when the
imaging subsystem was set up for experiments.

A white Teflon™ block was used as a reference for the calibration of the imaging system
because of its flat spectral reflectivity across the entire spectrum under the scan. The lens
aperture was set at /8 and the gain of the intensifier was set at 70% of the maximum gain for
acquiring high quality images and also to prevent the over saturation of the images at the 641 nm
wavelength band.

Six multispectral images, one image per each filter, were captured from each chicken,
yielding a total of 852 images, for respectively 264 wholesome, 240 septicemic, and 348 cadaver,
spectral images were captured from the 142 chicken carcasses. All digitized image data were
converted into a bitmap format for image processing and analysis.

The chicken images were processed for gray-tone spatial-dependence matrix image
textural analysis. First of all the image captured using the wavelength of 641 nm filter was
utilized as the template for the segmentation of the object because this image had high intensity
contrast to the background. The chicken objects in a segmented image scanned by other filters
were identified for image feature measurement. All pixels of the objects were digitized (0 - 255)
for the calculation of gray values. In order to obtain the image textural features, the co-
occurrence matrices were generated from the gray-tone images.

RESULTS AND DISCUSSION
Variability of COM textural feature

Textural features varied with the distance and angle of COM as well as condemnation of
poultry carcasses. Textural features between wholesome and unwholesome carcasses were
compared based on the statistical significance tests. Feature values of the wholesome carcasses
scanned at 542 nm wavelength were significantly different from those of septicemic (P < 0.0005)
and cadaver (P < 0.0005) carcasses, but no significant difference existed between septicemic and
cadaver carcasses when the COM of distance equals 1 and angle equals 0 were compared.
However, the textural features of septicemic carcass (d = 1 and 8 = 0°) were significantly (P <
0.01) different from those of cadaver carcass (d = 2 and 8 = 0°). The feature values of septicemic
and cadaver carcasses were significantly (P < 0.0005) different from the features of wholesome
carcass when distances equal 1 and 2, the angles equal 0°, 45°, 90°, and 135°, respectively.
Within same carcass groups, the textural feature values at 8 = 0° were much higher (P < 0.0005)
than the feature values at 8 = 45°, 90°, and 135°. For the carcasses scanned at 700 nm
wavelength, the feature values of septicemic and cadaver carcasses (d = 1 and 6 = 0°) were
significantly (P < 0.0005) different from the feature values of wholesome carcasses (d =2 and 0
=45° 90°, and 135°). While, no significant difference was found between septicemic and
cadaver carcasses (d = 1 and 6 = 0°).
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Figure 1 compared the feature values of mean angular second moment of different
carcasses scanned at 542 and 700 nm wavelengths as a function of distance and angle for
generating COM. Angular second moment of the wholesome carcasses scanned at 542 nm
wavelength was lower than that of septicemic (P < 0.0005) and cadaver (P < 0.0005) carcasses,
but no significant difference existed between septicemic and cadaver carcasses when the COM of
distance equals 1 or 2 and angle equals 0°, 45°, 90°, and 135° were compared. Similarly, the
mean value of angular second moment of wholesome carcasses scanned at 700 nm wavelength
was lower than that of septicemic (P < 0.05) and cadaver (P < 0.05) carcasses. In this case, the
value of septicemic carcass was higher than that of cadaver carcass for all different parameters (d
=1and 2; 6 = 0°, 45° 90°, and 135°). As shown in figure, the mean angular second moment
values of wholesome, septicemic and cadaver carcass (d = 1 and 6 = 0°) was much higher (P <
0.0005) than those values with 6 = 45°, 90°, and 135° when distance equals 2. Thus, the textural
feature values of spectral images changed with the parameters, specifically distance and angle for
generating COM.

Accuracy of discriminant model

Discriminant functions were developed for separation of the septicemic and cadaver
from the wholesome carcasses using discriminant analysis of selected wavelengths. Table 1
shows the accuracy of discriminant models for classifying wholesome and unwholesome, in this
case septicemic and cadaver, poultry carcasses.

The accuracy of the discriminant models for calibration varied with not only the
parameters for generating COM, but linearity of models as well. For the poultry inspection
application, quadratic discriminant models were selected because the separation accuracy of all
three cases, wholesome, septicemic, and cadaver, was high enough to compare to other models.
In this case, the angle for generating COM was 0° at the wavelengths of 542 and 700 nm.

The accuracy for calibration quadratic models varied from 90.9% to 95.8% when textural
features of spectral image at 542 nm wavelength were used as inputs. For the separation of
wholesome carcasses, the accuracy of model was 90.9% for calibration and 100% for test.
Similarly, the accuracy of discriminant modes were 95.8% for calibration and 90% for test for
the separation of septicemic carcasses. While, for the separation of cadaver carcasses, the input
features of spectral image at 700 nm wavelength was useful for model development. In this case,
the accuracy of discriminant model was 93.3% for calibration and 90% for test, respectively.

CONCLUSIONS

This study was conducted to determine the feasibility of a multispectral imaging system
for food inspection. Six visible/NIR wavelengths, 542, 571, 641, 700, 720, and 847 nm, were
used for the poultry carcass inspection application. Co-occurrence matrix textural features of
spectral images at the selected wavelengths were used for separation of unwholesome carcasses.

The analysis of textural features based on co-occurrence matrices was conducted. The
mean angular second moment of the wholesome carcasses scanned at 542 nm wavelength was
lower than that of septicemic (P < 0.0005) and cadaver (P < 0.0005) carcasses. Also, for the
carcasses scanned at 700 nm wavelength, the feature values of septicemic and cadaver carcasses
were significantly (P < 0.0005) different from the feature values of wholesome carcasses.

The discriminant functions for classifying poultry carcasses into three classes
{wholesome, septicemic, cadaver), were developed using linear and quadratic covariance matrix
analysis method utilizing the COM image textural features at the selected wavelengths. The
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results showed that the separation of wholesome carcasses from septicemic and cadaver
carcasses performed with high classification accuracy.

The accuracy of the quadratic discriminant models, expressed in rates of correct
classification, were 100% for wholesome, 90% for septicemic, and 90% for cadaver carcasses
when textural features of COM generated from the spectral images scanned at the wavelength of
542 and 700 nm. Since textural features of spectral images varied with the parameters such as
distance and angle for generating COM, the selection of optimum parameter values considering
wavelength is the most important task to apply multispectral imaging technology for food
inspection. Further textural feature analysis and discriminant model selection utilizing optimum
parameters will be conducted for improving the classification accuracy of poultry carcasses.
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Figure 1. Mean angular second moment at different distance (D) and angle (6) for generating
cooccurrence matrix. Note: the number of x-axis means 1. D=1 and 6 = 0° 2. D=1 and
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