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ABSTRACT

Farmers need alternatives for weed control due to the desire to reduce
chemicals used in farming. However, conventional mechanical cultivation cannot
selectively remove weeds located in the seedline between crop plants and there are
no selective herbicides for some crop/weed situations. Since hand labor is costly,
an automated weed control system could be feasible. A robotic weed control
system can also reduce or eliminate the need for chemicals. Currently no such
system exists for removing weeds located in the seedline between crop plants.

The goal of this project is to build a real-time, machine vision weed control
system that can detect crop and weed locations, remove weeds and thin crop plants.
In order to accomplish this objective, a real-time robotic system was developed to
identify and locate outdoor plants using machine vision technology, pattern
recognition techniques, knowledge-based decision theory, and robotics. The
prototype weed control system is composed of a real-time computer vision system,
a uniform illumination device, and a precision chemical application system. The
prototype system is mounted on the UC Davis Robotic Cultivator, which finds the
center of the seedline of crop plants. Field tests showed that the robotic spraying
system correctly targeted simulated weeds (metal coins of 2.54 cm diameter) with
an average error of 0.78 cm and the standard deviation of 0.62 cm.
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INTRODUCTION

A weed has been called “any plant growing in the wrong place at the wrong
time and doing more harm than good”. Weeds compete with the crop for water,
light, nutrients and space, and therefore reduce crop yields and also affect the
efficient use of machinery (Parish, 1990). A lot of methods are used for weed
control. Among them, mechanical cultivation is commonly practiced in many
vegetable crops to remove weeds, aerate soil, and improve irrigation efficiency, but
this technique cannot selectively remove weeds located in the seedline between
crop plants. The most widely used method for weed control is to use agricultural
chemicals (herbicides and fertilizer products). In fact, the success of U.S.
agriculture is attributable to the effective use of chemicals.

However, this heavy reliance on chemicals raises many concerns about
social and environmental aspects. The current concern over the use of methyl
bromide produces an example of some of the issues with the use of agricultural
chemicals. Ferguson and Padula (1994) investigated the economic effects of
banning methyl bromide (MB) for soil fumigants which has been widely used to
control soil pests and protect stored commodities, since MB contributes to the
depletion of the stratospheric ozone layer. They reported that the Environmental
Protection Agency (EPA) might ban the use of MB by initiating action under the
Clean Air Act that requires a phaseout of MB uses by the year 2001. They
predicted that losses for tomato growers would be about $86 million per year if the
available alternatives for tomatoes were used, while the net revenue loss would be
about $100 million annually if no alternatives were available.

For processing tomatoes in California, the current cost for weed control is
$50 per 0.4 ha (1 acre) for herbicides and $80 per 0.4 ha (1 acre) for hand weeding.
According to the economic analysis for the prototype machine by D. C. Slaughter
(1996), if a prototype robotic system could travel at 0.80 km/hr (0.5 mi/hr), the
savings would justify a purchase price of over $110,000 per machine considering
the current cost. This assumes a three-row machine for rows spaced 1.52 m (60
inches) apart, an operating period of 45 days per season, 60 percent of overhead
and operating costs, no interest, and a five year machine life.

Thus, farmers need alternatives for weed control due to the desire to reduce
chemical use and production costs. For some crop/weed situations there are no
selective herbicides. Since hand weeding is costly, an automated system could be
feasible. A robotic weed control system can reduce or eliminate the need for
chemicals. Currently no such system exists for removing weeds located in the
seedline between crop plants. In this project, a real-time robotic system was
developed to identify and locate outdoor plants using machine vision technology,
pattern recognition techniques, knowledge-based decision theory, and robotics.

There has been a lot of effort to control weeds non-chemically in order to
reduce chemical costs in response to environmental pressure. These methods can
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be largely divided into cultural weed control methods, mechanical control methods,
and biological control methods. In this project we would like to mainly focus on
the mechanical control methods. These include hand pulling or hoeing, tillage,
cultivation, burning, flame cultivation, and electrical devices (Cooperative
Extension Service, 1995). There are some researchers who investigated
non-chemical weed control methods (Parish, 1990, and Bond, 1992), but as Bond
pointed out, few attempts have been made to selectively control weeds in the seed
line.

However, with advances in image processing and machine vision
technologies, many researchers have applied these techniques to agriculture to
identify individual crop plants.

Slaughter and Harrell (1989) investigated the use of color information only
in digital color images for the guidance of a robotic manipulator in the harvest of
oranges. A color lookup table was implemented for real-time implementation of a
robotic guidance system. Jia et al. (1990) investigated the feasibility of using
machine vision technology to locate corn plants. Slaughter et al. (1992) developed
an experimental precision cultivator (later named as the “UC Davis Robotic
Cultivator”) that could identify the center of the row under normal field conditions.
The machine vision system identified the location of the seed line, then the offset
between the current position and the desired position was adjusted by moving the
toolbar laterally. The system was tested in tomato fields and preliminary test results
indicated that the prototype could be operated at speeds exceeding 8.0 km/hr (5
mi/hr) while precisely positioning the cultivator over the row within +/- 1.02 cm
68% of the time, and +/- 2.03 cm 95% of the time. This precision UC Davis
Robotic Cultivator is used as a guidance system for the robotic spraying system.

While initial research on the robotic cultivator was to find the center of the
row, Tian and Slaughter (1993) developed and tested a computer vision algorithm
in a laboratory environment to detect and locate individual tomato plants with
images taken in commercial tomato fields. They used hue and excessive green
(=2Green-Red-Blue) to get binary images by thresholding and extracted features
such as compactness, elongation, and y-coordinate of centroid of leaves from
binary images. With 28 field images, the algorithm was able to identify almost all
the isolated tomato cotyledons, and determined the inward position of occluded
cotyledons with the accuracy of 61.2%.

Further, Tian (1995) studied the feasibility of using a machine vision
system as the sensor for an agricultural field robot to identify individual plants with
images taken in the natural outdoor environment. The binary look-up table (LUT)
technique was used in both segmentation and plant shape detection algorithms to
promote high speed processing. He used the watershed method (Vincent and
Soille, 1991) for separating the cotyledons from the occluding plants in the images,
but it didn’t work on some of the images. Tian reported problems associated with
non-uniform illumination. He analyzed about 270 frames of field images in a



laboratory environment and successfully identified between 61 to 82 percent of all
the individual plants. However, he ended his research before developing the high
speed algorithms needed for implementation in a real-time computer vision system
for use in a commercial field.

Although there have been many efforts to control in-row weeds, no system
has yet been completed as a real-time implement for a field use. There is a
practical need for a real-time machine for weed control to eliminate or at least to
reduce the use of agricultural chemicals. In this research, we are developing a
“real-time” robotic system for weed control based upon algorithms developed
previously by Tian and Slaughter (1993), and Tian (1995). The ultimate goal of
this research is to develop new techniques of weed control for California tomato
growers. Specifically, we would like to develop an intelligent real-time machine
for weed control.

Objectives
The specific objectives are as follows:

1. To develop a new weed control system for seed-line weeds which is composed
of a real-time computer vision system, implement controller and an implement
for weed removal,

2. To implement the algorithms in real-time which were previously developed in
laboratory environment for identifying crop plants and weeds in the seedline,

3. To develop an algorithm which can distinguish plants older and larger than
those at the first true leaf stage,

4. To develop a uniform illumination device for field use with a real-time
computer vision system to get high quality images, and

5. To evaluate the performance of a prototype system in commercial agricultural
fields.

MATERIALS AND METHODS

Image Processing Hardware
The following equipment is used to develop and implement a real-time
computer vision system:

e Compaq Model DESKPRO XE 560 with 60 MHz Pentium CPU,

* SHARP GPB-2 board: a hardware portion of image processing system for an
IBM compatible computer,

e SHARP Incard: an accessory card handling three additional inputs (for
example, red, green, and blue video signals) to the GPB-2 board for color
image processing,

e SHARP AUXLUT Card: a daughter board to the GPB-2 for real-time look-up
table conversion,
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e COHU 2222-1340/0000 camera: a color video camera for high resolution
NTSC (National Television System Committee) image acquisition,

e Softvision: an image processing algorithm development software package, and

e Microsoft C Compiler Version 7.0.

Machine Vision System

All research is being conducted with juvenile processing tomato plants
grown in commercial tomato fields in northern California. The UC Davis Robotic
Cultivator is utilized as a guidance system to find the center of a row. Each step,
from taking field images to actuating the weed control device, is synchronized
using an encoder (Danapar Brand, Danaher Controls Model HR6251000006),
which is attached to a gage wheel on the toolbar of a tractor (Model 7800, John
Deere Co.). This sensor generates a pulse whenever the tractor moves 0.13 mm
forward. In order to obtain higher resolution from the encoder, an intermediate
pulley is used between the encoder and the axle of the gage wheel. A
SensorWatch ™ microcontroller (TERN Inc.) is used to count the number of
encoder pulses, and the location of the tractor is obtained by incrementing a
counter. The SensorWatch™ is a C/C++ programmable 16-bit controller designed
for data acquisition and control applications. The SensorWatch™ communicates
via a RS-232 serial port to the Compaq computer containing the Sharp boards. The
image size is 11.43 cm (4.5 in.) wide and 10.16 cm (4 in.) long, and a new image
will be taken every 879 pulses (11.43 cm) using an asynchronous reset signal given
to the color camera.

A robotic spraying system (Fig. 1) was developed with eight 12V DC
solenoid valves (Capstan Ag Systems, Inc., Topeka, Kansas), a metal plate (13.97
cm x 6.35 cm x 0.48 cm) to align the valves, a stainless steel manifold (3.18 cm x
3.18 cm x 13.97 cm), a specially designed accumulator, and eight RHS® circuits
for valve control. The robotic spraying system is mounted at the end of the tunnel
about three image frames behind the camera.

For the valve nozzle, a nylon unslotted hex head screw (size 8-32, 1.27 cm
long) was used with a center hole of diameter of 0.57 mm (#74 drill bit size) and
was screwed into the center of the valve so that each valve would spray a 1.27 cm
(0.5 in.) diameter circle with a 10 ms valve opening time at 103 kPa (15 psi) and a
nozzle height of 10.16 cm (4 in.) above the ground. The eight solenoid valves (2.54
cm diameter) were aligned in two rows (four valves in each row) in order to allow
the entire 10.16 cm (4 in.) wide seedline to be sprayed when they are all opened at
the same time.

A uniform illumination device was developed using a specially designed
cultivation tunnel which is attached to the end frame of an ‘Alloway’ cultivator and
is composed of a C channel beam (10.16 cm wide, 60.96 cm long, and 0.48 cm
thick), two dichroic halogen lamps (Iwasaki Electric Co. Model MR16CG, 12V



DC, and 50W), two flashed opal optical diffusers (Oriel Model No. 48030, 5.08 cm
diameter and 2.2 mm thick), two metal side shields and front and rear rubber flaps.
The two lamps were positioned at 60° relative to the optical axis of the camera.
The two side shields were designed to block the sunlight and to minimize the
amount of soil falling on top of the tomato plants during cultivation. Fig. 2 shows a
uniform illumination device attached to the end of the UC Davis Robotic
Cultivator.

Image Processing Algorithm

Upon receiving an asynchronous reset signal, the first step of image
processing was to acquire an image of juvenile tomato plants from the field. A
shutter speed of 1/500 second was used to keep images from blurring due to
motion of the tractor and wind. The three channels of the SHARP Incard were used
to input the red, green, and blue video components of an image and to digitize
them. The actual size of an image was about 11.43 c¢cm x 10.16 cm and was
digitized into 256 x 240 pixels. After a color image was digitized and stored as a
24 bit color image in computer memory, the image was segmented into plant and
non-plant regions using color information such as hue and saturation. In this step a
Bayesian decision rule was applied to build a look-up table and the AUXLUT card
was used for real-time conversion from a color image to a binarized image (white
for plant leaves and black for background). This process required approximately 3
ms using the AUXLUT card in a Compaq XE 560 computer with a 60 MHz
Pentium processor. After segmentation, the image was enhanced through a series
of eight image processing steps including erosion and dilation to remove any
digitization noise and to obtain a more realistic shape for the plant leaves. Fig. 3
shows an image of tomato seedlings in the field and Fig. 4 shows the segmented
and enhanced image using the Sharp image processing boards.

Then, features were obtained for each plant leaf such as area, major axis,
minor axis, centroid, elongation, compactness, the logarithm of the ratio of height
to width (LHW), and the ratio of length to perimeter (LPT). Tian (1995) selected
four features (elongation, compactness, LHW, and LPT) as the optimum subset
among all features for tomato plant recognition. Elongation, compactness, LHW,
and LPT are defined as follows:

Elongation = (Major Axis - Minor Axis) / (Major Axis + Minor Axis) (1)

Compactness = 16Area / Perimeter 2 (2)
Height
LHW =1lo 3
810 Wiah ) ®
LPT = Maj.orAx1s @)
Perimeter

—807—



Using these features, plant leaves could be identified either as tomato cotyledons or
as weeds for non-occluded leaves.

Table 1 shows execution times for each image processing step. For one
frame of a 256 by 240 pixel image representing a 11.43 cm x 10.16 cm image, the
image processing algorithm takes about 0.415 seconds to distinguish about 10 plant
leaves in the image, and about 0.022 seconds to produce centroid information to be

sent to the SensorWatch™ , thus the prototype cultivator could travel at a
continuous rate of 0.94 kilometers per hour. For this example, only the two features
of elongation and compactness were used. Higher speed could be achieved simply
by dedicating more image processing units to extract morphological features from
the leaves in parallel since extracting features takes about 82% of the time for one
image (Table 1).

Once the center of the weed leaves were located by the real-time computer
vision system, the information was sent to the valve operating unit, the
SensorWatch™ (TERN Inc.), which controlled the valve circuit. Then, an excited
valve would spray the proper amount of agricultural chemical to remove weeds. A
spraying time of 10 ms gives a flow rate of 0.098 L/min for each valve and an exit
velocity from the nozzle of 6.4 meters per second. An accumulator is attached to
the manifold in order to maintain constant flow rate independent of the number of
valves opened simultaneously.

RESULTS AND DISCUSSION

The prototype machine vision system was tested in commercial tomato
fields and images of tomato plants were acquired for future research. As of the date
of this publication, all hardware has been constructed and an implementation of the
real-time algorithm has been developed. The computer vision system, the uniform
illumination device, and the precision chemical application system have been built.
The algorithm for identifying crop plants and weeds in the seedline has been
implemented in real-time for non-occluded plant leaves. However, performance of
the prototype system was not obtained with tomato plants since most of tomato
plants had already grown bigger than the cotyledon stage in commercial fields at
the time of development, and an algorithm which can distinguish plants older and
larger than those at the first true leaf stage was not completed at this stage.

In order to estimate the accuracy of the system, however, the prototype
system was tested on tomato beds with metal coins of thickness 0.16 ¢cm and
diameter 2.54 cm, which were painted green in color. The coins were considered as
“weeds” in the field and tacked on a 10.16 cm (4 in.) wide strip of cardboard using
double sided tape in order to prevent them from changing their position. A look-up
table was created with a few training images to identify the color of the coins.
Eighty one coins were laid down on the bed in rows perpendicular to the tractor
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moving direction every 22.86 cm (9 in.) apart in a line of four or five coins. Their
centroids were sprayed with a blue dye (Precision Laboratories, Inc. SIGNAL™)
by the robotic spraying system after they were detected by the computer vision
system, while the tractor was moving forward about 0.8 km/hr. Then, the distance
was measured between the center of the coins and the center of the spray drops.
The average error between the center of the coins and the spray drops was 0.78 cm
and the standard deviation was 0.62 cm. Many sources of error were observed in
the test. First of all, the encoder did not always work consistently (i.e., it did not
generate the same number of the pulses for the same distance). This might be
because there were clods and bumps on the bed where the gage wheel was
traveling, or because the hardness of the soil was different from one field to
another. There is also an intrinsic error due to the physical distance between the
nozzle centers (1.27 cm). The distance between the center of the coins and the
spray drops could be 0.64 cm even though the computer vision system correctly
identifies the center of the coin.

In order to observe operation of the encoder on different ground surfaces,
the robotic spraying system was used to spray all 8 valves every 22.86 cm (9 in.)
apart both on the bed and on the paved road. The gage wheel pressure was about
138 kPa (20 psi). The distances between each of the two sprayed lines were
measured, subtracted from 22.86 cm (9 in.) and considered as errors. The absolute
values of these errors were taken and their mean and standard deviations were
summarized in Table 2. The mean error and the standard deviation of the paved
road were smaller than the ones from the dirt surface. This means that the encoder
works more consistently on a smooth surface. The drops sprayed on the paved road
seemed to be more aligned and uniform than the ones sprayed on the bed.

Future work

A more accurate method to measure the travel distance is needed since
every operation is synchronized with travel distance. In order to accomplish the
objective for distinguishing plants larger and older than those at the first true leaf
stage, the morphological characteristics and texture of true leaves of tomato plants
should be examined in more detail. A convex region of true leaves could be used
for identifying them. The perimeter of true leaves could also be used to produce a
feature since true leaves seem to have a longer perimeter than cotyledons. Also,
faster and more accurate computer vision algorithms are needed for real-time use.

CONCLUSIONS
This study shows that
e A machine vision system for a real-time weed control was completed and
tested in commercial tomato fields with a robotic spraying system as an
implement.



10.

1.

Using color information, the plant leaves were successfully extracted from a
field image.

The precision sprayer was able to spray the center of the targets (metal coins
2.54 cm in diameter) with the average error of 0.78 cm and the standard
deviation of 0.62 cm.
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Table 1. Execution time for each image processing step. (unit: ms)
Step |Acquire image SubsmplePinmizc Erode &| Extract [Identify| Total
(one field) |by column Dilate | features|tomato| time
Time 16.70 5.39 297 | 28.79 [ 339.12 | 21.80 | 414.77

Table 2. Performance of encoder on different ground surfaces. (unit: cm)

Dirt surface Paved road Total

n 73 57 130

Mean 0.23 0.15 0.20
Std. Deviation 0.19 0.14 0.17

4
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Robotic
i -~ Cultivator

Cameéra

Fig. 1
Robotic spraying system. Uniform illumination device attached
to the UC Davis Robotic Cultivator.
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Fig. 3 Fig. 4
Image of tomato seedlings in a Binary image processed by Sharp
commercial field. boards.
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