A Nonparametric Nonlinear Time Series Forecasting Model
for Hydrologic Variables
(FEEFY &E A HuARFH v Y AAE 71H)

Young-1l Moon!, U. LallZ, B. Rajagoplan3, and M. Mann*

1. Introduction

Most hydrologists are familiar with linear regression and its use for developing a
relationship between two or more variables. The general linear model (where the variables are
presumed to be linearly related after applying some predetermined transform) is used as a
building block in many activities ranging from spatial surface estimation, missing value
imputation, sediment load estimation to autoregressive time series modeling. Often, such a
procedure is not very satisfying. The choice of an appropriate transform to use may not be
obvious, and scatterplots of the data may not visually support the assumed model. An
alternative to such regression approaches that is capable of representing relatively complex
relationships between variables, through local or pointwise approximation of the underlying
function, is presented here.

There has been a surge in the development and application of nonparametric regression
(Miiller, 1987, Eubank, 1988, Scott, 1992, Moon and Lall, 1994(a) and (b)) and density
estimation methods(Silverman, 1986, Moon et al., 1993 and Lall et al., 1993) in the last
decade as computational resources have become more accessible. Some monographs that make
this literature accessible are by Silverman (1986), Eubank (1988), Hirdle (1989). Examples of
nonparametric estimators include orthogonal series expansions, moving averages; splines,
kernel, and nearest neighbor estimators. Some attributes of these methods are :

(1) The estimator can often be expressed as a weighted moving average of the observations.
(2) The estimates are defined locally or using data from a small neighborhood of each point of
estimate.

(3) Consequently, they can approximate a wide class of target, underlying functions.

(4) The nonparametric estimator has parameters that control the local weights and the size of
the neighborhood used for estimation. However, unlike linear or parametric regression, where
the parameters (e.g., intercept and slope) are sufficient to provide an estimate at any point, the
nonparametric estimator needs the observations in the neighborhood to provide an estimate at
any point. For example the parameter of a moving average is the number of points (e.g., 3) to
average over. One still needs the three points surrounding the point of estimate to report the
answer. By contrast, once a linear regression has been evaluated, the parameters are all one
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needs to provide an estimate at any point. In the parametric case, the overall behavior is of an
assumed form (e.g., linear or log-linear), and the parameters of this global form are all one
needs to estimate. The parameters of a nonparametric model thus have a different role, since no
global form is assumed, and the parameters merely control how local averages are to be
formed.

From an one dimensional time series we can reconstruct a multivariate space.
Nonparametric estimates of mutual information (Moon et al., 1995(a) and 1996) are used to
select appropriate lags (at which the successive values are somewhat independent) for this state
space recgnstruction.

Background information on locally weighted polynomial regression is provided in the
section 2. An application of local regression to time series forecasting is presented in the
section 3.

2 Locally Weighted Polynomial Regression

The locally weighted polynomials consider the approximation of the target function
through a Taylor series expansion of the unknown regression function in the neighborhood of
the point of estimate (Moon et al., 1995(b)). Cross-validatory procedures for the selection of
the size of the neighborhood over which this approximation should take place, and for the
order of the local polynomial to use are used (Moon et al., 1995(b) and Moon and Lall 1995).
The detail of this nonparametric regression approach was shown by Lall (1994) and Moon et
al. (1995(b)). Procedures for selecting the smoothing parameters and estimating prediction
limits for the local regression estimates was presented in Moon and Lall (1995).

In this section we present only the main idea of a locally weighted polynomials to save the
space. The reader is referred to Moon et al. (1995(b)) for the more detail. It is helpful to begin
with a simple univariate example. Consider the estimation of the function f(x) = Sin (x)e"0-2%,
from the data (x;, y;), generated such that the x; are equally spaced values from O to 10, and

the y; are then generated as f(xi) +¢, i=1..100, and ei~N(0,0. 1). This data set, the true,
underlying function, and three local regressions are shown in Figure 1. The data (small circles)

is 100 points generated from y= Sin (x)e-0-2X+N(0,0.1). The true function is shown as the
solid line. The thin dotted line is a linear regression through the full data. It shows the bias
incurred if a neighborhood of size 100 is used at any point. The thin dashed line is a quadratic
fit through the full data. It shows that the bias may be reduced by going to a higher order
polynomial. Estimates are considered at 3 points, x=2.2, 4, and 8. Local linear fits with 10
neighbors are used at the first two points, and a locally quadratic fit with 25 neighbors is used
at x=8. The data in each neighborhood are shown with large circles. The local fits are shown
as thick solid lines. The approximation at the first two points is quite good. The estimate at
x=8 is poorer. Since we know the true function, we can use those values with the local
quadratic fit. The resulting fit at x=8 is shown as a thick dashed line. It is seen to coincide with
the target function. Consequently, the approximation error at x=8 is a consequence of the local
noise realization.

We observe that the quality of the local regressions is quite good. The higher order
(quadratic) fit is less biased than the linear, when 100 neighbors are used (global fit). The bias
decreases substantially as the size of the neighborhood is reduced from 100 to 10 or 25 points.
However, the local regressions can exhibit increased variability of estimate due to the reduced
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sample size. This is exacerbated as one moves to a higher order polynomial fit with the same
number of data points.

There is a trade-off between bias and variance as one changes the order of the local
polynomial and the number of points used to fit it. Parameter selection approaches are usually
based on an estimate of the mean square error (MSE) of the estimation scheme. Moon et al.
(1995) introduced the use of a Local Generalized Cross validation (LGCV) score that uses data
directly from the local regression at the point of estimate. Methods for parameter selection and
the estimation of error variances was presented in Moon et al. (1995(b)).
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Figure 1. Itlustration of local linear and local quadratic regression,
with the weights w;; =1/k.

|
1

O\
~-
oe
=]

10

3. Application

The primary application we consider in this paper is the forecast of (1) the volume of the
Great Salt Lake (GSL) at key points in time from its 1847-1993, biweekly time seriés and (2)
Southern Oscillation Index. First, we considered blind forecasts of the GSL volume from
different states for 1 year into the future from the date of forecast. The forecasted values are
then compared with the volumes that were actually recorded subsequently. They are presented

in Figure 2. The lag T was selected as 10 as in the range of the first minimum of the average
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mutual information (Moon et al., 1995(a) and 1996) and it was based on experimentation to
get the best predictions (min predictive squared error). An embedding of m=5 was selected
after experimentation with various values in the range 1 to 9. This value corresponded to the
one that most commonly minimized LGCV. We searched over k1=50 to k2=150 nearest
neighbors and typically selected 120 to 150. Locally linear and quadratic fits were considered.
Typically a linear fit was selected. The results are discussed in the Figure 2. Similar results

were obtained in Lall et al. (1996) and Abarbanel et al. (1996). ’
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Figure 2. A sequence of 1 year blind forecasts of the GSL from July 1977 to Jan 1996. The
dots represent the observed GSL time series. The solid lines represent 12 forecasts, one for
each month of the next year. Only data available up to the beginning of the forecast period is
used for fitting and forecasting.

The SOI is a measure of El Nino Southern Oscillation (ENSO) pattern. The SOI data
consist of time series of difference in the monthly mean Sea Level Pressure(SLP) between
Tahiti (150W, 13S) and Darwin (130E, 18S) from Jan. 1899 to Dec.1993 (Moon, 1994 and
Moon and Lall, 1996). The 2 yr filtered low frequency time series of the normalized SOI time
series explain well the trend of the El Nino events and La Nina events. The normalization
consists in by subtracting the mean SOI at each month and dividing the monthly anomalies
obtained by the corresponding standard deviation. Negative episodes correspond to El Nino
events and positive episodes identify La Nina events. In Figure 3, Jan.1984-Dec.1989 (yp1)
and Jan.1989-Dec.1994 (yp2) blind forecasts of SOI (1=6 and M=5) are presented, using only
data from Jan 1899 to Dec. 1993 and from Jan 1899 to Dec. 1994. The behaviors in the
forecast and 2 yr. filtered data are coincidental. Figure 4 shows Jan 1994-99 blind forecasts of

SOI (=6 and M=5), using only data from Jan 1899 to Dec. 1993.
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Figure 3. Jan.1984-Dec.1989 (yp1) and Jan.1989-Dec.1994 (yp2) blind forecasts of SOI (t=6
and M=5), using only data from Jan 1899 to Dec. 1983 and from Jan 1899 to Dec. 1988

respectively.
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Figure 4. Jan 1994-99 blind forecasts of SOI (1=6 and M=5),
using only data from Jan 1899 to Dec. 1993.

4. Conclusions

A locally weighted polynomial regression methodology for approximating nonlinear
regressions was introduced in this paper.

The methodology presented was then applied to the forecast of selected time series with
encouraging results. These methods are still evolving, We can expect improvements in
procedures for estimating prediction intervals and for selecting parameters of the method.
Algorithmic improvements for more efficiently exploiting multivariate data structures are also
to be expected. -

From a hydrological point of view, these methods provide new directions for the
exploration of data as well as the possibility of dramatic improvements in time series
forecasting and spatial surface reconstruction.
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