$[II\sim26]$ ## Annealing effect of SnO_{2-x} thin films grown by oxygen ion assisted deposition <u>Seok-Kyun Song</u>, Jun-Sik Cho, Won-Kook Choi, Hong-Koo Baik*, Hyung-Jin Jung, and Seok-Keun Koh Division of Ceramics, Korea Institute of Science and Technology, Cheongryang, P.O. Box 131, Seoul, Korea Department of Metallurgical Engineering, Yonsei University, Sudaemoon Ku, Shincheon Dong, Seoul, Korea* Tin oxide (SnO_{2-x}) thin films were deposited by ion assisted deposition (IAD) at various ion beam voltages (V_I) onto amorphous SiO₂/Si substrate at room temperature. Tin oxide thin films deposited at V_I=300 V (Film B) and at 500 V (Film C) with a fixed discharge current of 0.4 A were of stoichiometric composition. The SnO_{2-x} films showed various crystallinity and fine grain size after annealing at 500 °C for one hour in atmosphere. The annealed Film B showed preferred orientation along SnO₂<110> axis in XRD study, but the annealed Film C showed a degradation in crystallinity. X-ray photoelectron spectroscopy study showed that the main peak of Sn3d in all samples even for some samples with $N_0/N_{sn}=1.71$ and 1.51 were similar to the binding energy of Sn^{4+} . For the Film B, refractive index was 2.0 and the estimated porosity was 5.2 %. From temperature dependence of conductivity, the activation energies of Film A (V₁=0 V), B, and C at the low temperature between 323 and 373 K were in an inverse proportion to the refractive index. The activation energies ranged between 0.330 and 0.357 eV at temperatures 373 \sim 523 K. The transition temperature of conductivity in Film A, B, and C were observed around 523 K. The propane (C₃H₈) and methane (CH₄) gas sensitivities of SnO_{2-x} devices were determined with various V₁ at the substrate temperatures of 100 - 500 °C. Tin oxide thin films can be successfully fabricated by IAD as with nonstoichiometric/stoichiometric composition, the good crystallinity, and refractive index of bulk.