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ABSTRACT

An enhanced solution recovery method for recovering accurate derivatives such as moments,
or shears, from finite element solutions for C° beam and plate is presented. In the enhanced
method, the square of the residuals in the equilibrium equations is included. Results are
compared with those of standard Zienkiewicz-Zhu methods. Numerical examples show that
in the global projection, the enhanced technique improves the accuracy of projected solution
significantly. In the local projection, the enhanced method circumvents the numerical ill-
conditioning which occurs in some meshes, and usually recovers derivatives with better
accuracy.

1. INTRODUCTION

Several investigators have recently reported the use of adaptive techniques for plate
problems. Zienkiewicz and Zhu(1989) used a least square fit of a C° interpolant to the finite
element solution, which is often called L, projection, to devise an error measure. Meissner
and Wibbeler(1991) have used bubble modes to develop error criteria. In general, the
adaptive mesh refinement is dependent on a posteriori error estimation. The most popular
solution recovering techniques for a posteriori error estimators are global and local projection
methods.

The global projection method for obtaining a continuous solution originated from
Hinton and Campbell(1974). It was applied by Zienkiewicz and Zhu to plane problems(1987)
and plate bending problems(1989). This technique has been used frequently for the mesh
adaptivity of plate and shell problems due to the simplicity of its implementation and its
reasonable accuracy. The global projection is quite effective but has the following
drawbacks: Recovery procedures are expensive with a consistent matrix and the use of a
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lumped matrix decreases the accuracy of recovered solution; The recovered solution shows
poor accuracy near the boundaries.

The local projection, unlike the global projection, uses the information of a local region
to recover a continuous solution. Recently, a very effective local projection technique has
been developed by Zienkiewicz and Zhu(1992). In this technique, a small patch of elements
is used to recover the smoothed solution. The projected nodal derivatives in a patch can be
obtained by a least square fit of a polynomial to the values of the superconvergent points of
the patch. In general, this method is faster and often more accurate than the global projection.
However, it was found that numerical singularities (or ill-conditioning) are encountered in
certain element configurations which occur quite often in standard meshes.

In this paper, global and local projections with equilibrium residuals are developed. The
addition of the equilibrium residual dramatically improves the performance of the global
projection and circumvents the singularity in the local projection at almost no cost.

2. SOLUTION RECOVERY PROCEDURES

Enhanced Global Projection
In the enhanced least square form for global projection, the equilibrium residual is added
to the standard least square term of Mindlin-Reissner plate, so
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where m* and g* are the projected moment and shear, respectively, and mi® and q" are c’
finite element solutions. 24 and D, are differential operators between moments and
transverse shears, and transverse shears and distributed load. The parameters o and @ are
relative weightings which are usually set to 1.0 in this study. The terms related to the
weighting o are the residuals in the equilibrium equations.

The projected moments and shears are expressed in terms of continuous shape functions
N(x) and nodal parameters m* and q*, so

m*(x) = Ny (x) m*, q*(x) = Ng(x) ¢* @

DTm' )= D Nu@ @, D7 W= D'N® T 3)
where Ny, and N are block diagonal matrices of the shape functions N for the moments and
shears. The shape functions N are usually taken to be of the same order as used for the finite
element displacement field.

Substituting equations (2) and (3) into (1) and then minimizing (1) with respect to the
unknown nodal parameters m* and q* gives the global equations (4).
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If the integral on the right hand side of (4) is evaluated assuming m" and q" are constant in
each element, for example, taking mh{(&=n=0) and q"(&=n=0) for four-node quadrilateral

element, the accuracy of the recovered solutions is improved.

Enhanced Local Projection

In the local projection technique proposed by Zienkiewicz and Zhu(1992), the least
square of the error is minimized over a small patch of elements. The function IT, is evaluated
by using a discrete set of the superconvergent points within that patch. The projected

derivatives are assumed to be polynomials in the spatial variables as follows

m(x)=Pp(X)an, q'x)=Pyx)aq ®)
where P, and Py are polynomial matrices defined as
POO
Pm{opo . ©
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and the corresponding unknown coefficients ar, and a, are

an! = {ayy, amy, Amxy 'S aqT = {aqx, agy } . Q)

In a four-node bilinear quadrilateral element, for instance,



P=[L,x,y,xyl, am=/[a1, ay a3,a4]r:x. ®)

In the equilibrium enhanced local projection, the following is minimized for each patch:

I = 011 ), (m*(x;) - mi(xp) 2+ Olzf (DT m*- g1 ’dQ
=l Qp

I=1

+ oY, (g (x)- qx) 2 + oczf (DT q* +p) dQ. ©)
Q,

In equation (9), the summation of pointwise equilibrium residuals can also be used, but in
general, the integration of the constraint condition over the whole patch improves the
accuracy of the projection. Substituting (5) into (9), and minimizing it with respect to two
sets of unknown coefficients ay, and aq gives
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where n is the total number of superconvergent sampling points in the patch.
After solving (10) and (11), continuous nodal derivatives at any internal node J in the
patch are obtained as follows:

m = Py(xpan,  q)=Py(x)ag (12)

3. NUMERICAL EXAMPLES

One Dimensional Examples

We used an inverse solution where cubic and quartic w functions are used to produce
linear moment-constant transverse shear and quadratic moment-linear shear, respectively; see
Table 1 for details. Uniform meshes (5, 10, 20, and 40 elements) are used for the finite
element analyses.

*u% and exact error measure

The distribution of elemental estimated error measure lle
Il ehi 2 are shown in Fig. 1. The legend "Exact” in Fig. 1 denotes lle™ 2. Convergence rates of
the projection error, lleFl, are shown in Fig. 2. The results show that the enhanced method

shows better accuracy in the evaluation of the estimated error, which is often used as error
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indicator for mesh adaptivity. In the standard global projection method using a consistent
matrix, the elemental projection error measure lepll 2 is oscillatory. The results in Fig. 1 for
the estimated error computed by the global projection using a lumped matrix appear to be
quite accurate. However, the accuracy of the projection itself is quite poor as can be seen in
Fig. 2.

Table 1 Beam solutions for the one dimensional patch models

cubic w quartic w
wi(x) x? — 6rx x* — 12rx?
a(x) 3x? 4x?
m(x) —6xD, -12xD,
g(x) -6D, —24xD,,
pix) 0 24D,

where D, = EI, D, = k,GA, and r = D,/D,.
'=(1+v)! for h ic beam.

5
All variables are multiplied by a scaling factor to render them
small and geometrically linear.
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Two Dimensional Plate Examples

The Wempner-Bathe-Dvorkin four-node shell element [Wempner, et al. (1982), and
Dvorkin and Bathe(1984)] is used for the 2-D plate problems. This element is free from
shear locking so full integration is used to compute the stiffness matrix. Fig. 3 and 4 show a
clamped circular plate model with a uniform pressure load and a simply supported square

plate subjected to a sinusoidal load, p = p, sin 7% sin =Y.

b
Convergence rates of the energy norms of projection errors, e, in the clamped

circular plate are shown in Fig. 5. This results show that the enhanced method shows better
accuracy than the standard method. In Fig. 5, the accuracy of enhanced local projection is
better than that of standard local projection method since in standard local projection, large
error occur in some localized regions because of ill conditioning. Fig. 6 shows the
convergence rates of lle?l in the square plate under sinusoidal load. In the coarsest mesh, the
standard local projection shows better accuracy than the enhanced local projection. This may
be explained by the poor discretization of the distributed load in the coarsest mesh. As the
mesh is refined, the equilibrium enhanced local projection method becomes more accurate.
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6. SUMM AND CONCLUSIONS

An enhanced solution recovery method which includes the squares of the residuals of
the equilibrium equations has been described. This technique was applied in both global and
local projection schemes for the C? beam and plate problems.

The equilibrium enhanced global and local projection methods show the following
advantages:

1. The enhanced global projection method improves the accuracy of projected solutions
significantly, especially near the boundaries.

2. The enhanced local projection method circumvents the ill-conditioning caused by certain
frequently encountered element configurations and increases the accuracy of the recovered
solutions.

3. It has been shown that these advantages hold for both thin and thick plates.
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