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A Simple Method of Vibration Analysis of Special Orthotropic Plate with A Pair
of Opposite Edges Simply Supported and The Other Pair of Opposite Edges Free
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ABSTRACT

In this paper, a simple but accurate method of vibration analysis of structural elements with or
without attached mass/masses is presented. The method used has been developed by the
senior author since 1974, This method is very effective for the plates with arbitrary boundary
conditions and irregular sections. This method is applied to the special orthotropic plate
with two opposite edges simply supported and the other two opposite edges free.  Such
plate represents the most of the simply supported bridges/decks, including concrete and
girders—cross beam systems. Detailed illustration is given for beams and plates for easy
understanding. Some laminate orientation for which the special orthotropic equations can be
applied are identified.

1. INTRODUCTION

Composite materials can be used economically and efficiently in broad civil engineering
applications when standards and processes for analysis, design, fabrication, construction and
quality control are established. Many of the bridge systems, including the girders and
cross-beams, and concrete decks behave as the special orthotropic plates which have [0°, 90°,
0°L: fiber orientations. Some laminate orientations such as [a B), [a B al, [¢ BB a a Bl
and [a BB 7 @ 2 8] with certain values of @, 8, and 7, and with increasing r, have
decreasing values of Bis, Bx, Dis, and Dy stiffnesses, where @, B, and r are the fiber
orientation in degrees measured from the laminate axes, positive in the counterclockwise
direction[1], r is an integer, and B; and Dy are the bending-stretching coupling stiffness
matrix and the flexural stiffness matrix, respectively. Dy expresses the relation between the
stress couples, Mjs, and the curvatures, Kgs. By relates Mys to the mid-surface strains,

€,;S and the in-plane stress resultants, Ngs, to Kis. Bis and Ba cause bending-shearing
and stretching-twisting coupling. Dz and Dsx cause bending-twisting coupling. Such
laminates given above may be very useful when one tries to apply the advanced composite
materials to new constructions such as building slabs, bridge decks, and so on. He can obtain
the advantages of the advanced composite materials using simplified equations. For such
laminates, the simple equations for the special orthotropic plates can be used [1].

In case of a laminated composite plate with boundary conditions other than Navier or Levy
solution types, or with irregular cross section, or with nonuniform mass including point
masses, analytical solution is very difficult to obtain. Numerical method for eigenvalue
problems are also very much involved in seeking such a solution. A method of calculating
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the natural frequency corresponding to the first mode of vibration of beam and tower
structures was developed and reported by the senior author in 1974. In this report, the effect
of neglecting the weight of beams on the natural frequency is given for several beam support
types.

Recently, this method was extended to the first mode vibration analysis of two dimensional
problems including composite laminates, and was reported at the first Japan International
Society for the Advancement of Materials and Process Engineering Symposium and
Exhibition(JISSE I) in 1989 Further extension of this method to the second mode
vibration of such two dimensional problems was reported at the Eighth Structures Congress of
American Society of Civil Engineers in 1990. This method, applied to thick laminated
plates, was reported at The Third East Asia-Pacific Conference on Structural Engineering and
Construction (EASEC III), 1991, The Eighth International Conference on Composite Materials
(ICCM 8), 1991, and JISSE II, 1991.

This paper presents the illustration of application of this method to the special orthotropic
plates with a pair of opposite edges simply supported and the other pair of opposite edges
free.  Such plates represent the case of bridge floor systems and decks, and building floors
made of advanced composite material panels. This procedure can easily be applied to any
type of laminates with arbitrary boundary conditions and non-uniform sections. Several
structural elements such as the floor slabs of a factory or a building and others may be
subject to point mass/masses in addition to its own masses. Design engineers need to
calculate the natural frequencies of such elements but obtaining exact solution to such
problems is very much difficult.  Pretlovel7] reported a method of analysis of beams with
attached masses using the concept of effective mass. This method, however, is useful only
for certain simple types of beams. Such problems can be easily solved by presented method.
The effect of concentrated mass at the center of the plate on the natural frequency is also
presented as an illustration.

In order to illustrate this method, some details already reported by the senior author are
repeated in this paper.

2. METHOD OF ANALYSIS

A natural frequency of a structure is the frequency under which the deflected mode shape
corresponding to this frequency begins to diverge under the resonance condition. From the
deflection caused by the free vibration, the force required to make this deflection can be
found, and from this force, resulting deflection can be obtained. If the mode shape as
determined by the series of this process is sufficiently accurate, then the relative deflections
(maximum) of both the converged and the previous one should remain unchanged under the
inertia force related with this natural frequency.

Vibration of a structure is a harmonic motion and the amplitude may contain a part
expressed by a trigonometric function. Considering only the first mode as a start, the
deflected shape of a structural member can be expressed as

w=W(x,y)F()=W(x,y)sinwt (¢}
where
W : the maximum amplitude
@ : the circular frequency of vibration
t : time.
By Newton's Law, the dynamic force of the vibrating mass, m, is
ow @

F=m atz .
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Substituting Equation (1) into this,

F =—m(w)*Wsinat. 3)
In this expression, @ and W are unknowns. In order to obtain the natural circular
frequency, o, the following process is taken. The magnitudes of the maximum deflection at
a certain number of points are arbitrarily given as

w(i, )1 =W(,j)1) )
where (i,j) denotes the point under consideration. This is absolutely arbitrary but educated
guessing is good for accelerating convergence. The dynamic force corresponding to
this(maximum) amplitude is

F(i,i)(1)=m(, N oG, )(DI* wi,iXD). )

The "new” deflection caused by this force is a function of F and can be expressed as
w(i, )2 =1 [ m(k, DI, DI? wk,IX1) }

k.}
= A3, 5.k, 1) { m(k, Dla(i,i)(1)]* wik,1)(1) }

where A is the deflection influence surface. The relative (maximum) deflections at each point
under consideration of a structural member under resonance condition, w(ij)(1) and w(ij)(2),
have to remain unchanged and the following condition has to be held :

w(ij1) / w2 = 1. D
From this equation, @(i,j)(1) at each point of (i,j) can be obtained, but they are not equal in
most cases. Since the natural frequency of a structural member has to be equal at all points
of the member, ie., @(ij) should be equal for all (ij), this step is repeated until sufficient
equal magnitude of w(ij) is obtained at all (ij) points. However, in most cases, the
difference between the maximum and the minimum values of w(i,j) obtained by the first cycle
of calculation is sufficiently negligible for engineering purposes. The accuracy can be
improved by simply taking the average of the maximum and the minimum, or by taking the
value of w(ij) where the deflection is the maximum.  For the second cycle, w(i,j)(2) in

w(i,)(3) = f1m(,i) [oi,i)2) 1* w(i,i)2) | ®)
the absolute numerics of w(i,j)(2) can be used for convenience.

In case of a structural member with irregular section including composite one, and
non-uniformly distributed mass, regardless of the boundary conditions, it is convenient to
consider the member as divided by finite number of elements. The accuracy of the result is
proportional to the accuracy of the deflection calculation.

(6)

3. NUMERICAL EXAMPLE (1)

Some Orientations Which Behave as Special Orthotropic Plates
The material properties are assumed as
E1 = 386 GPa, E2 = 827 GPa, v = 026, va = 00557, Giz = 414 GPa,

a=b=1m and h, = 000125 m for all plies.

Normalized stiffnesses are defined as

A' = A/h in GPa, B® = 2B/h2 in GPa, D* = 12D/h3 in GPa,

where h and A are laminate thickness and the extensional stiffness matrix, respectively.

The Tables from 1 to 4 show some orientations behavior as the special orthotropic plate[1l.
[eBBaadpB) and [a B): orientations have decreasing values of Bis, B, Dis, and Dz if a=-
B and the number of plies, r, increases. [a 88 7 a @ B): has the same property if 7 is
either 0° or 90° For all orientations with above condition A},/Dy, =1, indicating that these
laminates are quasi- homogeneous. The result in these tables indicates that the three
partial differential equations for the laminate bending,
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can be reduced to one equation, for the special orthotropic plate,

3! 4 -
D1 3“4’ +2D3 a}fzgyz +D2 a;g =q(x,y).

(9a)

(9b)

(9c)

Q10

However such plates will have different stress distribution through each ply of the laminate,

quite different from the "real” special orthotropic plates.

Table 1. (An’Bis"Bas',Dis’,Dzs )/Du” for [@ 8 8 @ @ BIr Type Laminates,

a=- 8, r=5, a/b=1, h=0.00125m

Angle
a)

0° 15° 30° 5 60°

Au /Dy’

1.00000 { 1.00000 | 1.00000 | 1.00000 } 1.00000
B, /Du 0.00000 | 000211 | 0.00401 { 0.00499 | 0.00379
Bas, 0.00000 | 0.00030 | 0.00159 ( 0.00499 | 0.00956
D1e,/Dn, 0.00000 | 0.00000 | 0.00000 ) 0.00000 ; 0.00000
Dos /Du 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000

Table 2. (Au'Bis",Bos’,Die’\Dos’)/Du’” for [a 8 8 @ @ 81r Type Laminates,

a=-8, r=9, a/b=1, hy=0.00125m

Angle
a) o° 15° 30° 45°
Au‘/Du‘ 1.00000 | 1.00000 | 1.00000 [ 1.00000 | 1.00000
0.00000 [ 0.00117 { 000223 { 0.00277 | 0.00210
/Dn 0.00000 | 0.00017 | 0.00088 | 0.00277 | 0.00531
D16 /D, | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000
Dos /D" | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000




Table 3. (Au"Bis’,Bes,Dis’\Das’)/ D’ for [a 81r Type Laminate,
a=- 8, r=27, a/b=1, h,=0.00125m

Angl
51 o 15° 3 | & | & | B | %
Au/Du, | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000
Bis/Du. | 000000 | 0.00352 | 0.00668 | 0.00832 | 0.00631 | 0.00208 | 0.00000
Bas/Du’ | 0:00000 | 0.00050 | 0.00267 { 0.00832 | 0.00158 | 0.01418 | 0.00000
Dis/Dn’ | 0.00000 | 0:00000 | 0.00000 | 0:00000 | 0.00000 | 0.00000 | 0.00000
Dos/Du” | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000
Table 4. (An"Bis,Bas’,Dis’,\Das )/Du’ for [@ 8 8 ¥ @ @ 81 Type Laminate,
a=-8, 7=, r=10, a/b=1, h,=0.00125m
I
Argel e | | % | & | e | | o
Au/Du; | 100000 | 1.00000 | 1.00000 [ 1.00000 | 1.00000 | 1.00000 | 1.00000
1/Du. | 0.00000 | 0.00000 | 0:00000 | 0:00000 | 0:00000 | 0.00000 | 0.00000
1. | 0:00000 | 0:00000 | 0.00000 | 0.00000 | 0:00000 | 0.00000 | 0.00000
Dis/Du’ | 0:00000 | 0:00000 | 0.00000 | 0:00000 | 0.00000 | 0.00000 | 0.00000
Dz /Du 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000

4. NUMERICAL EXAMPLE (2), VIBRATION OF PLATES

As a numerical example, the special orthotropic laminate given in the senior authors book
[1] is considered, Fig 1.
This example illustrates the method of analysis.
The material properties are :

Matrix modulus, Ep=3.4 GPa, Fiber modulus, E;=110 GPa

Matrix poisson’s ratio, Vp=10.35, Fiber poisson’s ratio, v4=10.22

Matrix volume ratio, V,=0.4, Fiber volume ratio, V{=0.6 .
By the use of rule of mixture, in simpler forms,
_ _ —— EEn
_ GGy _ _34GPa _
Gy= V.GtV (13), Gn= 2(1+50.35) — 1.2593 GPa,
_ 10 GPa___ =
Gf——-———-—z(1 10.22) =45.0820 GPa, G2 =3.0217 GPa,
Vig=V ¥+ V= 0.2720, (14), Va =V " Ié—i =(.0328.
= ="
= % .
"
X / 0°
= / t1 = t2 = t3 = 0.006 m,
= = a a=b=1m
b Fiber Orientation : 0°/90°/ 0°

Figure 1 Specially Orthotropic Laminate
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After the stiffnesses are obtained by using the following equations

n

A= 21 ( Qi) * (hx—hy—y), in N/m,

=

( Qy), - (h%— h%,y), inN,

By=
Dii=

2
kZZII( Qi ( W% — h%.)), in Nm,

Ot DIt

the influence surfaces are calculated by using Eqn(10).
From Eqn (4),
w(i, (D) =W(,j)1)
where W is the maximum amplitude, (ij) or (x,y) is the point under consideration, and (1)
after (i,j) indicates the first assumed mode shape. The first mode shape is assumed as

w(i, (D=

e888s
SEEE
858588
SEEE
eRENS

By Eqn (5) which is

F(, (1) =+m(, ) o, DI w(i,i)1)
where m(,j) = the mass at (ij) point = ph(i,j)dx4y,
in which 4x and 4y are the mesh sizes in the x- and y- directions, respectively, o is the
mass density at (ij), and h is the thickness of the plate at (ij), and «(ij)(1) is the "first”
natural circular frequency at (ij) point, F(i,j)(1) is obtained in terms of @(ij)(1).
Substituting F(i,j)(1) into Eqn (6)

k.1
w(i,i)(2) =2 4G,j,k,1) - F(i,i)1)

=3 46,5, %D - (+m(k,D) - [, DT - wlk, DD}
where 4 (i,jk]D is the influence surface, ie., the deflection at (ij) point caused by a unit
load at all of (k,}) points, w(i,j)(2) can be obtained.
From Eqn (7)
w(ij)(1) / wijp@) = 1
from which, one can obtain
w(22)(1) = 151268 / YV m(2,2).
The calculation is carried out at all points (ij) and
@ (3,j)(1) = (1913-1512) / le,JS
Since the range of w(i,j)(1) is too large, one more cycle is proceeded. For w(ij)(2) to be
used for F(ij)(2), the absolute numerics of o (ij)(2) are used.
Then
o 1,2 = (15865-1631.3) / Y m(i,i), »(22)(2) = 1587 / Vm(2,2).
Proceeding further,
0 (1j)3) = (15925-1598.0) / Vm(i,)), w(@ij)4) = (15986-1594.3) / Vm(i,j)

0 22)3) = 1593 / Vm(2,2), w(22)4) = 15936 / Vm(2,2).
The result by the energy method is
o = 15937 / Vm.
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5. APPLICATION TO THE SUBJECT PROBLEM

In order to apply the presented method to the subject problem, the first step to take is
obtaining the influence surfaces. Any method can be used. Levy solution with sine Fourier
series terms to the simply supported edge direction may be good.

P
Simple ¢¢ “ *¢ ¢%lee
/ Free

Figure 2 Plate under Consideration

Since the "free” edges may have integrally built in "beams”, resulting to change of "free”
edges to elastically supported edges, the F.EM. program ARGOL is used for this illustration.

The accuracy of the natural frequency is proportional to that of the inverse of the square
root of the deflection. The accuracy of using this FEM. program can be checked by
comparing the deflection obtained by this method with that obtained by the other method.

For the plate with four edges simply supported, for which "exact” energy method solution is
available, three significant figures by F.EM, are same as those obtained by the energy
method, for almost all values of c=b/a, Figure 1.  The beam analogy has similar result for ¢
=17. For c¢=4, two figures are equal. For two edges simply supported and the other
opposite edges free, the beam analogy and FEM. solutions have three significant figures
equal when c¢=5. For the plate with all edges fixed, the beam analogy solution has
differences less than 0.6% when c=5. For this illustration, a concentrated load P=N-a-b-q
at the center of the plate is added to the uniform load q. The result is given in Table 5.

Table 5. @- ¥ oh, c=a/b=1 (a=l, b=1), P = N-a-b-q, q =pohg
CASE A : g Neglected, CASE B : q Considered

N CASE A CASE B 0 B) / o(A)

0 1358.161

1 763.3866 686.2808 89.89
3 440.7415 424.8031 96.38
5 341.3969 333.8809 97.79
7 288.5330 283.9673 98.42
10 241.4040 238.7175 98.89
15 197.1056 195.6378 99.26
20 170.6984 169.7433 99.44

6. CONCLUSION

In this paper, the simple and accurate method of vibration analysis developed by D. H. Kim
is presented with detailed illustration.
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Numerical illustrations for plates are given and it is proven that the presented method is
simple to use but extremely accurate. The boundary condition can be arbitrary. Both
stiffness and mass of the element can be variable. One can use any method to obtain the
deflection influence coefficient. The accuracy of the solution is dependent on only that of
the influence coefficients.

One should recall that obtaining the deflection influence coefficients is the first step in
design and analysis of a structure. The merit of the presented method is that it uses such
influence coefficient values, used already for calculating deflection, to obtain the the natural
frequency of the structure. When the plate has concentrated mass or masses, one can simply
add these masses to the plate mass and use the same deflection influence surfaces to obtain
the natural frequency.

This method is applied to the special crthotropic plate with two opposite edges simply
supported and with the other opposite two edges free, Figure 2. Such plate is the case of
the most of the simply supported bridges.

Several laminates with certain orientations reduce the three partial differential equations to
one equation for the special orthotropic plate. Some laminates with such property are
identified and given in Tables 1 to 4. When advancd composite materials are used for
bridges, buildings, and other civil constructions, the design must have fiber orientations other
than 0° and 90°. Analysis of such laminate is very much complex because of the existance
of three simultaneous partial differential equations. The laminates given in this paper have
the advantages of such fiber orientations but can be analysed by simple method used for the
special orthotropic orientations. Futher simple method can be used for such laminates. Such
method is given in Reference[l].

The presented method can be applied to such laminates as well as concrete bridge/decks,
and the girders and cross-beams systems.
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