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Free Vibrations of Horizontally Curved Beams
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ABSTRACT

The differential equations governing free, out of plane vibrations of horizontally curved
beams are derived and solved numerically to obtain the natural frequencies and the
mode shapes. The Runge-Kutta method and Regula-Falsi method are used to integrate
the differential equations and to determine the natural frequencies, respectively. In nu-
merical examples, the hinged-clamped end constraint is considered and four lowest fre-
quency parameters are reported as functions of four non-dimensional system parame-
ters: (1) opening angle, (2) slendemness ratio, (3) shear parameter and (4) stiffness pa-
rameter. Also, typical mode shapes of displacements and stress resultants are shown.

1. INTRODUCTION

Since horizontally curved beams are basic structural forms, their dynamics and es-
pecially free vibrations have been studied extensively. References!"™ and their citations
include the governing equations and the significant historical literature on the out of
plane free vibrations of uniform, linearly elastic curved beams of various geometries
and end constraints. Briefly, the exact solutions of natural frequencies have been stud-
ied by Archer™, Morely® and Ojalvo'. Approximate methods have been developed in
calculating the natural frequencies of curved beams. Such works included studies by
Den Hartog[4], Voltera and Morell®,

To the knowledge of the authors, no investigation has been made into the free vi-
brations of horizontally curved beams using the numerical method in which the numer-
ical integration scheme and the bracketing method are combined with. The main pur-
pose of this paper is, therefore, to present such a numerical method for calculating the
natural frequencies of horizontally curved beams.

2. GOVERNING EQUATIONS

The geometry of uniform circular horizontally curved beam is defined in Figure 1.
The two ends are supported by the hinged or clamped end constraint. Its opening
angle and radius of curved beam are @ and a, respectively. The radius of arbitrary
point of beam has an inclination & with that of left end. Also shown in Figure 1 are
the positive direction of vertical displacement v, positive directions of rotations ¢ and B
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Fig. 1 Curved beam and displacements Fig. 2 Loads on a curved beam element

of cross-section due to the bending moment and shear force, respectively, and positive
direction of angle of twist ¢.

A small element of the curved beam with the opening angle d6 and arc length ds
shown in Figure 2 defines the positive directions for the shear forces Q, the bending
moments M, the torsional moments T, the vertical inertia force F, and the rotatory
inertia couple C,. With the inertia force and the rotatory inertia couple treated as

equivalent static quantities, the three equations for dynamic equilibrium of element are:

a0 -~ _ aM = _4aT _ -
dg —Fv=0 ‘g —aQ+T+aCs=0, M~G7= (1~3)

The equations that relate M and T to the rotations ¢ and ¢ are as follows.
=EL{, dé =1G dé
M=2g-g6) T=L2(s+G5) @5)

where E=Young’s modulus, G=shearing modulus, I=area moment of inertia and J=polar
moment of inertia of cross-section.
The total angle between the deformed and undeformed cross-section of the beam is:

=Ll =up ©)
in which B is the angle of shear. The transverse shear force Q is given by™
= = ldv
Q=kgAG=kAG( 1 55— 9) )

in which A is the cross-sectional area, and k is the cross-sectional shape factor. For
examples, the k value for a rectangular and a circular section are 5/6 and 3/4, re-
spectively. In an I beam k is approximately equal to Aw/A, where A, is the area of
web. For rolled sections, Aw/A ranges from about 0.2 to 0.5.

The curved beam is assumed to be in harmonic motion, or each co-ordinate is
proportional to sinwt, where @ is the angular frequency and t is time. The inertia
loadings are then

F,=—mao%, C¢=—ma)2r2¢ 8,9)

where m=mass per unit length and r=radius of gyration of cross-section.
When equations (4), (5) and (7) are differentiated once, the results are
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To facilitate the numerical studies, the following non-dimensional system parameters
are defined as follows:

p=v/a, A=a/r, y=kG/E, &=]JG/EI (13~16)

where 7 =non-dimensional vertical displacement, A =slenderness ratio, y =shear param-
eter and ¢ =stiffness parameter.

When equations (8) and (12) are substituted into equation (1) and the non-
dimensional forms of equations (13)~(16) are used, the result is

d?y __ o} g+ 92
a¢¢ ~ 277 a6

When equations (5), (7), (9) and (10) are substituted into equation (2) and the
non-dimensional forms of equations (13)~(16) are used, the result is

7

2 2
—g—e-‘-f— —7/1236 (7A2+E——;)—§—)¢z+(1+e)%% (18)

When equations (4) and (11) are substituted into equation (3) and the non-
dimensional forms of equations (13)~(16) are used, the result is

%Z;é —(1+1) g +Ls (19)

In equations (17) and (18), the p; is the non-dimensional frequency parameter
defined as

p;= wa’(m/ED"? (20)

which is written in terms of the ith frequency w= w;, i=1,2,3,4,-*
For the hinged end at =0 or #=a, the boundary conditions are

7=0, ¢ =0, ¢=0 21--23)
For the clamped end at §=0 or #=a, the boundary conditions are
72=0, ¢=0, ¢=0 (24 —26)

Beam stresses may be computed from the following non-dimensional forms for the
bending moment M, the torsional moment T and shear force Q. The respective results
obtained from equations (4), (5) and (7) using equation (13) are:

w_Ma_ , d¢ =_Ta dé -9 _ -
M=Er =¢-45° T=76 =%Td> Q= KAG G- (27~29)

3. NUMERICAL METHOD AND VALIDATION

Based on the above analysis, a general FORTRAN computer program was written
to calculate pi, 7=7i(8), ¢=¢i(8), $=¢:(6), M=M(d), T=Ti6, Q=Q,¥). First,
the Regula-Falsi method was used to calculate the characteristic values p;; and then
the Runge-Kutta method was used to calculate the mode shapes. In the free vibration
of horizontally curved beam, such a numerical method was developed for the first time
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in this paper. The numerical procedure developed herein is summarized as follows.

(1) Specify the curved beam geometry (support constraint, a, A, 7, &), and set of
three homogeneous boundary constraints which are either equations (21)~(23) or
(24) ~(26).

(2) Consider sixth order system, equations (17)~(19), as three initial value prob-
lems whose initial values are the three homogeneous boundary constraints 6=0,
as chosen in step 1. Then assume a trial frequency parameter p; in which the
first trial value is zero.

(3) With the numerical integration technique in which the Runge-Kutta method” was
used, integrate equations (17)~(19) from #=0 to f=q. Perform three separate
integrations, one for each of the three boundary constraints.

(4) From the Runge-Kutta solution, evaluate at §=a the determinant D of the co-
efficient matrix for the boundary conditions of equations (21)~(30) or (24)~(26).
If D=0, then the trial value of p; is an eigenvalue. If D=0, then increment p;
and repeat the above calculations.

(5) Repeat steps 3 and 4 and note the sign of D in each iteration. If D changes
between two consecutive trials, then the eigenvalue lies between these last two
trial values of p;.

(6) Use the Regula-Falsi method®), one of the bracketing methods, to compute the
advanced trial p; based on its two previous values.

(7) Terminate the calculations and print the value of p;i and corresponding mode
shapes when the convergence criteria are met.

In numerical examples, the hinged-clamped beams were considered and the lowest
four frequencies were calculated. For these studies, suitable convergence of solutions
was obtained for an increment of J=q /50 referred on the Figure 4 in which the con-
vergence analysis is shown. The convergence criterion was that p; solutions obtained
with the /50 increment agreed with those obtained with the «/100 increment to
within three significant figures.

For comparison purposes, the finite element solutions based on the commercial
package SAP90 were used to compute the first four frequency parameters pi. The
results are shown in Table 1 in which the frequencies of this study agree closely with
those of SAP90 within a tolerance of 2%. These comparisons serve to validate the
numerical method developed herein conclusively.

200 Table 1. Comparison of frequency parameter p;
1. -
i 2‘=eo_°' Airgo?:d-y:oa, £=0.8 between this study and SAP90

150 SN =4 Geometry of i Frequency parameter, p; Error(%)
i = =t ! ] curved beam This study(A) SAPSO(B) (A-B)/A

hinged- @=30" 1 55.25 55.66  -0.74

Se o o= o clamped 2 181.0 1824 077
I A=7170. 3 378.5 3799 -0.37
s0-] =2 1=0.32 4 6474 649.0 -025

4 B8——- & =5 1 5
] ., =154 @=60" 1 1313 1326 -099

o o P d

c"}T.T.,..,..u,.,..ja,..fj 2 44.43 4467 -0.54
0 20 ] o/00 60 80 10 3 93.84 9533 -1.59
4 161.3 1628 -0.93

Fig. 3 Convergency analysis
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4. COMPUTED RESULTS AND DISCUSSION

It is shown in Figure 4 for which hinged-clamped beam, A =50, 7 =0.3 and ¢ =0.8,
that the frequency parameters p; decrease as the opening angle « is increased gener-
ally. It is observed that p; values all decreases very rapidly « increases from about 30
deg to 100 deg. Further, the p; approach lower limits or horizontal asymptotes as «
increase.

In Figure 5, hinged-clamped beam, @ =90 deg, 7 =0.3, £=0.8 and p; increases as
A increases. The increasing slope is very steep when A is less than 50. And it is
clear that the effect of A is greater in the higher mode than in lower mode in this
range of A, i. e. less than about 50. Also, the p; values approach upper limits or
horizontal asymptotes as A increases to 200.

Figure 6 shows the relationship between pi and y for hinged-clamped beam with
a =60 deg, 1=50 and £=0.8. It is seen that the effect of y on p; is similar to the
Figure 5 represented p; vs. A.

Shown in Figure 7, hinged-clamped beam, =60 deg, A=50 and $=0.3, are the p;
versus ¢ curves. The p; increases as the & increases. But the increasing rate of p;
is very small in the range of & >0.1.

200 200
1 hinged-clamped end 7 hinged-clamped end
] A=50., y=0.3, £=0.8 ] a=60.,7=03, £=0.8
4 4 i=4
150 150
a” 100 a” 100 =3
50 50 ﬁf i=2
1 i=1
0 e mam e SR 0
[+] 30 60 80 120 150 0 50 100 150 200
o A
Fig. 4 pi vs. a curves Fig. 5 pi vs. A curves
200 200
1 hinged-clamped end 7 hinged-clamped end
1 a=60.,A=50., ¢=0.8 1 a=60", A=50., y=0.3
150 150 =4
ar 100 o 100—]
i i=3 - E3
501 f:f— 50 2
=1 1 =1
A O~ T T
0.0 0.1 02 03 0.4 05 00 0.2 04 06 08 10
rd &
Fig. 6 p; vs. 7 curves Fig. 7 pi vs. & curves
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Typical second mode shapes of displacements and stress resultants are shown in
Figures 8 and 9, respectively, based on the hinged-clamped end, «=60 deg, A=50 and

1=0.3 and £=0.8.

hinged-clamped end hinged-clamped end
a=60.°, A\=50., y=0.3, £=0.8 a=60.°, A=50., 0.3, £=0.8
p,;=42.20 p,=42.20
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Fig. 8 Example of second mode shapes
of displacements

5. CONCLUSIONS

Fig. 7 Example of second mode shapes
of stress resultants

The method presented here for calculating frequencies for horizontally curved beam
was found to be efficient, robust and reliable over a wide range of system parameters.
Computations showed that the frequency parameters p;i increase as the slenderness
ratio A, shear parameter y and stiffness parameter & increase, other non-dimensional
system parameters remaining same, while the p; decreases as the opening angle o

increases.
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