ot pxgo R4
Finite element analysis of wrinkling membranes
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ABSTRACT

A new iterative scheme is proposed for finite element analysis of wrinkling or tension structures. This
enables us to update the stress state and the internal forces correctly taking into account the existence of
wrinkling. The finite element implementation of the scheme is straightforward and simple, and only minor
modifications of the existing total Lagrangian finite element codes for membranes are needed. The validity of
the scheme is demonstrated via numerical examples for the torsion of a membrane and the quasi-static inflation

of an automotive airbag, both made of isotropic or anisotropic elastic membranes.

1 Introduction

Analysis of wrinkling or tension structures, such as flexible membranes or fabric structures, has attracted
substantial attention because of their increasing application in marine, space and terrestrial technology, and
more specifically because of the simulation of airbags as a protection mechanism for drivers and passengers in
automotive industry. There have been many works, theoretical and numerical, on the analysis of such wrinkling
structures, for examples: Wagner!'! (1929), Reissner'? (1938), Wu et al. ¥ (1981), Roddeman et al. ') (1987)
and Steigmann et al. ! (1989). '

In this work, we introduce another scheme for the wrinkling analysis that can be used in the finite element
analysis of anisotropic membranes and isotropic membranes. The scheme is based upon the observation that a
local region of wrinkling is in the state of the uniaxial tension, and that the orientation and the magnitude of
this uniaxial tension can be obtained from an invariant relationship between the normal strain component in
the direction of the local uniaxial tension and the shear strain component in the presence of wrinkling. Thé
scheme.enables us to determine the wrinkling orientation in a straightforward manner and to reconstruct the
stress state properly for wrinkled regions, so that the correct internal forces may be evaluated. We implement
this scheme into a geometrically nonlinear finite element analysis using the total Lagrangian formulation. The

finite element implementation of the scheme is very simple. We do not need any special finite elements, but
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only minor modifications of the existing total Lagrangian finite element codes for membranes are needed. We
demonstrate the validity of the proposed scheme through numerical examples for an isotropic and for an

orthotropic material, such as, the torsion of a membrane and the quasi-static inflation of circular airbags.
2 Basic equations and wrinkling analysis

Models describing the mechanical behavior of wrinkling membranes are usually based on the assumption
that membranes have zero flexural stiffness. For the analysis of membranes with wrinkled regions, it is
necessary to have some fundamental assumptions as follows. i) The configuration of the wrinkled region is
controlled by negligibly small bending stiffness of the membrane. The exact shape of the membrane after
wrinkling is not definable with only membrane theory. To describe the average membrane deformation that
would be obtained after the wrinkles have been removed from the mid-plane, we define the fictitious non-
wrinkled membrane which has the smooth surface as shown in Fig. 1. This fictitious non-wrinkled membrane
gives only the average deformation. ii) Because the membrane is not able to support any compressive stresses,
the membrane will wrinkle at once when a negative stress is about to appear. iii) The membrane is in the state
of plane-stress.

In a small material element which is under locally homogeneous deformation in the presence of wrinkling,
the stress is locally in the state of the uniaxial tension, and in the deformed configuration the direction of the
uniaxial tension is perpendicular to the wrinkling direction. To describe deformations of 2 membrane, we rely
upon the Cartesian coordinate systems as shown in Fig, 1. Let (Xi, X, X3) denote a Cartesian coordinate of a

material point in the undeformed configuration x,, and (x;, X,, X3) a Cartesian coordinate of a material point in
the deformed configuration «(t). For dealing with wrinkling, we take a local frame (X,, X, ) in «, such that the
orientation of the 5(1 -axis is lined up with the material line element of x, that is to be along the uniaxial
tensile direction in the presence of wrinkling in k(t). For dealing with wrinkling, we take a local frame
(X,, X,) in «, such that the orientation of the X, -axis is lined up with the material line element of x, that is

to be along the uniaxial tensile direction in the presence of wrinkling in x(t).
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Fig. 1 The fictitious non-wrinkled membrane and coordinate systems.
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Then the orientation of the X, -axis is lined up with the material line element of «, that is normal to the
orientation of the X, -axis. Moreover, we choose a local frame (%,, X,) defined on the fictitious non-wrinkled
membrane in k(t) such that the X, -axis is along the uniaxial tension direction in the presence of wrinkling and
the X, -axis is then aligned with the wrinkling direction. Note that a material line element along the 5(, -axis
in x, is aligned with the X, -axis in k(). However, a material line element along the 5(1 -axis in x, is not
mapped to be aligned with the X, -axis, which is along the wrinkling direction in x(t), unless the shear strain
with respect to the (X,, X, ) frame vanishes. Let E,,E,,e, and € denote the unit base vectors along the
coordinate axes X,,X,,x, and %, respectively. Assuming that the Green strain E is small that the 2-nd

Piola-Kirchhoff stress S may be approximated by the linear relationship with the Green strain, we can write the
stress-strain relations referred to the X,-X, coordinate system as S"=C"™'Eg;, or in the “collapsed

representation,”

S 11 Cl 1 C12 CIJ E”
S22 = C?l CJZ C23 . E;; (l)
S12 C3 1 C32 CJS 2 E”

where C™ is the fourth order stiffness tensor and C” is the component of a local “equivalent elasticity” matrix
resulting from C”*,

2.1 The state of stress and strain in wrinkling

Hereafter we will call the state of the uniaxial tension in the absence of wrinkling, “the state of the natural
uniaxial tension,” which is to be distinguished from the state of the uniaxial tension possibly with wrinkling,

which is to be the genuine final state of deformation in the presence of wrinkling.
Note that the directions of the 5(1 -axis and the X, -axis, which are the uniaxial tension direction in k, and
k(t), respectively, are unknown and dependent upon a material point (X;, X;). The stress-strain relation

referred to the X, frame may be written as
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where C" = C*T*T" with
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We can eliminate strains E,, and E, by using these uniaxial tension conditions, $* =S" =0. Then the

uniaxial stress-strain relation can be obtained as

)
§"-a.E, with A= GHpE _pnps
& (621633 _ 623631) +6B (éslézz _ 621632) ¥

{Cvu(ézs@az _ ézzéas) +
0]

Once material data are set and the directions of the X, -X, axes are known, we can calculate the uniaxial

stress at the natural uniaxial tension. Moreover, the strain components En and En , satisfying the uniaxial

tension condition under the natural uniaxial tension can be obtained as

GRE _pups
CBEn _pupn 1

GACB _onpa

22 =WE” N and ZEU = (5a,b)

During the pure wrinkling process, from the state of the natural uniaxial tension in the absence of wrinkling

to the state of the uniaxial tension possibly with wrinkling, there is no change of the deformed coordinate X,
of a material point, while there is some change in the deformed coordinate X,. From these observations, it
follows that during the pure wrinkling process there are no changes of the strain components E, and E,,
referred to the local Cartesian frame (X, X, ) in «,. This simple observation turns out to provide a useful clue

for finding the wrinkling orientation, which is to be obtained as the direction of the uniaxial tension, we can

devise an efficient scheme for searching for the wrinkling orientation, as will be shown in Section 2.2.
2.2 Wrinkling orientation

As discussed earlier, the wrinkled state is nothing but the state of the uniaxial tension. Hence the wrinkling
orientation is determined by the direction of the uniaxial tension or equivalently by the orientation of the X, -

axis for a given deformation, which is given by B (see Fig. 1). To insure the uniaxial tension state, we use the

following procedure:

i) check ﬁ,, > 0 for an assumed value of ﬁ

ii)set E,=E,,

iii) calculate E,, and E,, from equation (5.3, b) 6)

iv) take p=p if E,,=E,, and E,,>E,,.
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2.3 Wrinkling criterion

From given strains and appropriate constitutive equations, whether the state of the membrane is taut,
wrinkled or slack is determined based on wrinkling criteria. We will consider the wrinkling criterion based
upon the principal stresses and strains by Roddeman et al."¥l. For an isotropic or an anisotropic material, the
wrinkling criterion based upon the principal stresses and strains can be written as follows: let §' > $? and E; >

E; as before. Then

i) If $* > 0, wrinkling does not occur. (taut)
ii) If E; <0, biaxial wrinkling occurs. (slack) @)

iii) Otherwise (S < 0 and E, > 0), uniaxial wrinkling occurs. (wrinkled)
3 Finite Element Formulation

A total Lagrangian finite element formulation based upon the principle of virtual work is used for membrane
finite element analysis (Bathels], 1982), into which the foregoing scheme of the wrinkling criterion and the

search for the wrinkling orientation are incorporated. We may then obtain the following secant equation:

(n+l)1;-l(c)=(n+1)1)l ‘ (8)

where ¢ indicates the nodal displacement vector in the global finite element equation. Equation (8) represents

the balance of the internal force and the external force for each nodal degree of freedom, and it is nonlinear in

t (n+l)

the nodal displacemen c. For solution of this nonlinear equation, we rely upon a Newton type iterative

scheme via Taylor series expansion, and we can finally obtain:
(n.k) Ku(n,k+1) ch=(n+1)P, _(nk) F, )

n,k+l)

where (™**Dac , is the nodal displacement increment for the (k+1)-th iteration, such that

(el =W 48 DAc, and e, =Me, +F "M Ac, =k1im ke,
* —>0

(,,J,)KU _ anlc)Fl =j'

N= Iy Craer &k, (N* N
&, "X, X, X,

a B
av+|, am,%ws'“ —@—(—dV
K L

0 P

The iteration process for an equilibrium position is carried out in a two-stage procedure (Contri et al.!”),
1988) only for the first loading step. The first stage consists in searching for an equilibrium position of the
membrane with both of the compressive stresses and the tensile stresses active. Once the equilibrium position is

obtained, the compressive stresses are relaxed at the next stage as follows. Given a new estimation of the nodal
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displacements in the processes of equilibrium correction, at each integration point of an element the judgment
is made on the wrinkling criterion, whether it is taut, wrinkled or slack. Here we use the wrinkling criterion (7)
based upon the principal stresses and strains. After this decision, the following procedures will be used: In the
taut situation, the stresses of the membrane are determined by the normal analysis-without wrinkling. In the
presence of wrinkling, the stresses are determined on the basis of the scheme for the wrinkled membrane,
described in the previous section. In the slack situation, the stresses contain only zeros. When the membrane is
in the wrinkled state, the special procedure discussed in Section 2.1 and 2.2 is required for the reconstruction of
the stresses. For loading steps except the first, the iteration process for an equilibrium correction is carried out

in the one-stage procedure which corresponds to the second stage of the first loading step.

4 Numerical examples

4.1 Torsion of a membrane

For the first example, we consider a circular membrane attached to a rigid disc at the inner edge and to a
guard ring at the outer edge (Roddeman'®, 1991). Turning the rigid disc causes wrinkling of the membrane.
The scheme which accounts for wrinkling should be used to calculate strains and stresses. For the finite
element analysis, 120 four-node isoparametric membrane elements are used as shown in Fig. 2 (a). The nodal
points on the outer circle are fixed in space. The nodal points on the inner circle are rotated over 10 degrees. A
material behavior is assumed as follows: Young’s modulus E = 1.0x10° and Poission ratio v = 0.3 for a linear
isotropic material; E,; = 1.0x10° Pa, By, = 1.0x10° Pa, v, = 0.3 and G2 = 0.385x10° Pa, referred to the X;
frame in Fig. 2, for a linear orthotropic material.

The deformed shapes for the linear isotropic and orthotropic membranes are shown in Fig. 2 (b) and (c),
respectively. Furthermore, the direction and the magnitude of the uniaxial tensile stress is indicated by using
the direction and the length, respectively, of the arrow at each integration point in the wrinkled region. The
magnitude of the wrinkling strain is also indicated by using circles of varying magnitude. Regions which are
not indicated with arrows and the circles means a taut region. As expected, the isotropic problem shows itself to
be rotationally symmetric. In the orthotropic membrane, wrinkling occurs mostly on the left-lower and the
right-upper parts.

Thickness = 4.0x10° m
(b) For the linear (c) For the linear
(a) Undeformed shape isotropic membrane orthropic membrane

Fig. 2 Deformed shapes, the uniaxial tensile stress and the wrinkling strain on a wrinkled region for torsion

of a circular membrane (144 elements).
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4.2 An inflatable circular airbag (Automotive airbag)

Now consider an inflatable circular airbag that initially consists of two flat circular pieces of fabric sewed
together along the edge. In this case the unfilled (undeformed) structure exhibits a flat and stress-free surface
which, when filled to a final volume, will experience stressing and wrinkling of the fabric. This wrinkling is
due to the shrinkage in circumferential direction of the airbag as it is inflated. The inflatable circular airbag is
modeled as two parallel circular planes using 3- and 4-node elements as shown in Fig. 3. In the initial
configuration, the two circular planes of the front and the back coincide with each other. The action of the gas
inside the airbag is assumed to be a uniform pressure distribution on the inner surfaces of the bag.

Consider the airbag to be made of the same two flat isotropic membranes. By applying appropriate boundary
conditions in the horizontal mid-plane, we need only to model one quarter front of the bag. The finite element
model for a quarter airbag consists of 20 total elements (4 in circumferential direction and 5 in radial direction).
A linear isotropic material behavior is assumed as follows: E=6.0x 107 Pa and v=0.3. The thickness is 0.4x107
m. The airbag is subjected to a uniform pressure from 0 to 10 kPa. Fig. 4 shows the vertical displacement of the
center point and the radial contraction of a point of the circumference with respect to the increase in the
internal pressure for two cases: one obtained with wrinkling being taken into account and the other obtained
from pure membrane theory with no wrinkling being taken into account. The difference between both cases is
greatest in the low pressure region. As the pressure increases, the displacement difference is smaller since the
wrinkled region decreases. .

Consider next an airbag with front and back anisotropic membranes, modeled with 264 elements. The airbag
is subjected to the uniform pressure of 5 kPa. The linear orthotropic material behavior is assumed as follows:
E,i = 2.0x10° Pa, E; = 2.0x10° Pa, vi; = 0.1, G = 0.385x10° Pa : material principal angle 6, = 0° for the

front plane membrane and material principal angle 8, = 45° for the back plane membrane (see Fig. 3).
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(a) : Displacements obtained with wrinkling being taken into account

(b) : Displacements obtained from pure membrane theory with no
wrinkling being taken into

Fig. 4 The vertical displacement of the center

Front plane

point and the radial contraction of an
Fig. 3 The airbag model. inflatable circular airbag modeled with

20 elements (4x5) for a quarter plane.
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(a) Deformed shape (b) Front plane (c) Top view (d) Side view

Fig. 5 Deformed shapes of an airbag (0,=0° and 6,=45°).

The thickness is 0.4x10° m. Fig. 5 (a), (b), () and (d) show the overall deformed shape, the deformed shape of
the front plane, the top view and the side view, respectively. Furthermore, the uniaxial tensile stress and the
wrinkling strain are indicated, as in the aforementioned torsion case, at each integration point on the wrinkled

region. The region with no arrows and circles means a taut region.

5 Conclusions

With the aid of the correct stress update based upon the observation regarding the invariant relation between
some of the strain components referred to a coordinate system aligned with wrinkling, a simple but efficient
scheme is proposed for finite element analysis of wrinkling. This scheme is found to be applicable to an
anisotropic membrane and an isotropic membrane. Moreover it requires no special finite element development,
but only minor modifications of the existing total Lagrangian finite element codes for membranes are needed.
Two numerical examples have been used to demonstrate the validity of the proposed scheme: one is the torsion

of a membrane and the other the inflation of an airbag used in the automotive applications.
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