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Abstract

We develop tn this study a wavelet transform method to apply to the fluz reconstruction problem in reactor
analysis. When we reconstruct pinwise heterogeneous fluz by sterative methods, a difficulty arises due to the
near singularity of the matriz as the mesh size becomes finer. Here we suggest a wavelet transform to lower the
spectral radius of the near singular matriz and thus to converge by a standard sterative scheme. We find that
the spectral radius becomes smaller than one after the wavelet transform is performed on sample problems.

1. Introduction

Wavelets are lately attracting a considerable amount of attention and becoming a useful tool in many
different fields of science and engineering. We note that the wavelet basis has the following three outstanding
characteristics  :

(1) The operators and functions are represented in an orthonormal basis.

(2) The basis functions have vanishing moments leading to the sparsity of representations.

(3) The algorithms are recursive due to the multiresolution properties of the basis.

From the above properties, several people have tried to solve differential equations using the orthonormal
wavelet function®, and we also developed a wavelet method to solve the neutron diffusion equation.® These
wavelets have the property of localization in time and in frequency, and can take advantage of the sparsity
after wavelet transform so as to obtain computationally fast algorithms.

The wavelet functions ¥, x(z) are generated by dilation and translation operation such as

Yak(z) = 2*2p(2"z — k), (1)

for some ¥ € L2(R) and (n, k) € Z2. Here Z and R respectively denote the set of integers and real numbers.
L?(R) denotes the space of measurable, square—integrable functions.
We can generate these wavelet functions from the scaling functions ¢y, x(z) which have the same form

$ni(z) = 2*/7¢(2"z k), (2)
for some ¢ € L2(R).
Suppose we define

Vo =closure < ¢pp: k€ Z >, (3)

W, =closure < ¢p: k€ Z >, (4)

then the scaling functions and wavelet functions have the following subspace relations :

#nk €Va, ()

Ynic € Wy, (6)

Vo, ocVgeoeVy oV, - (7
Vo = Vao108W,_y, (8)
Uva = I*R), (9)
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Pw. = L*(R), (10)

where © stands for orthogonal sum.
From Eq. (8),
Vvl. = Vn—m ®Wn—m® oW, —Z@Wn—l'

Thus, a wavelet decomposition at scale n becomes

n—1

falz) = fa-m(z) + Z g9i(z), fi €Vj, g; €W, (11)

j=n-m

or

fa(2)

Z An k ¢n,k (z)

n-—-1
Zan-—m‘,k ¢n—m,k(z) + z Zbu—m,lc 'bs‘.k(z)-

k j=n-m k

(12)

]

In Eq. (12), the first expression represents the function f at a single “fine” scale n, while the second expression
gives a multiscale representation of the function f at the coarser scales {n —m,---,n—2,n — 1}.

Because of Eqs. (7) and (9), there exist sufficiently large values of n such that ||f — f,|| is arbitrarily small
for any f € L?. A fundamental result in wavelet theory on approximation of smooth functions is as follows? :

£ = fall < CULFH 27", (13)

where the first N moments of the wavelet (z) chosen are zero :
/¢(z)a:”dz=0, forp=0,1,2,---,N—1. (14)
Eq.{13) states that smooth functions can be approximated with error O(h™) by combinations at every scale

h=2""
Since ¢ € Vp, ¥ € Wy, and V; =V, ® Wy, we have the following two-scale relations :

$(z) = D hed(2z— k), (15)

{

¥(z) = > axd(2z k). (16)

If the two—scale relations are restricted by finite sums, the scaling and wavelet functions have compact
supports. In addition, if ¥ is required to generate orthonormal basis, the following relation holds :

g = (—1)*h1-k. (17)

Among several wavelet bases, we have chosen the orthonormal compactly supported wavelets that were
constructed by Daubechies.!

2. Fast Wavelet Transform (FWT)

Now, let us describe the algorithms of FWT and inverse fast wavelet transform. Assume that a finite
sequence 59 k= 1,2, -, K is given.
i) Fast Wavelet Transform (Decomposition)

2N -1

J = j-1

S = E : hnsyizk—1s
n=0

2N -1
7 J—1
4= E , InSnt2k-1-
=0

(18)
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ii) Inverse Fast Wavelet Transform (Reconstructicn)

N N
J~1 _ 3 5
St = D hak-1sh gy + ) Ge1dh_ g
k=1 k=1
N N (19)
J-1 _ J 7
$op-1 = Z hak-28y_ gy + Z 92k—-3%n k415
k=1 k=1

where N is the Daubechies order.
For a two-dimensional case, fast wavelet transform (FWT) can be easily obtained by transforming a row
vector and then a column vector, or transforming a column vector and then a row vector. So we can calculate

the entries of the matrices o, 87,47 with j = 1,2, -, n, that are the coefficients of two-dimensional wavelet
transform. In Figure 1, we show the mapping of the entries in two—dimensional wavelet transform. Now, given
a set of coefficients t?' , with ¢,1=1,2,.--, K, repeated application of the formula for the one-dimensional case
produces
2N-1 2N-1
) 1 ) 1
au",: = Z IkImtLy2i-1,mt2i-1 s Bli= z Gehmty i 1, m21-1 >
k,m=0 k,m=0 20
2N-1 2N-1 (20)
- y - -1
'73,1 = Z hkgmt-}:+2i-1,m+21—1 ) t'.?,t = Z Rihmty oi 1 my2-1
k,m=0 k,m=0
with 3,0 =1,2,---,2"7, j = 1,2, -, n. Clearly, we formulate two—dimensional version of the wavelet trans-

form in Eqs. (18) and (19), and provide an order N' 2 gcheme for the evaluation of the elements of all matrices
al,p7, 4 withj=1,2,---,n.

8. Fast Solution of Linear Systems in Reactor Analysis

Like fast Fourier transform (FFT), fast wavelet transform (FWT) is a fast and linear operation that operates
on a data vector whose length is an integer power of two, transforming it into a numerically different vector
of the same length. Also like FFT, FWT is invertible and in fact orthogonal. For FFT, the new domain
has basis functions which are the familiar sines and cosines. In the wavelet domain, the basis functions are
somewhat more complicated and have “wavelets”. Unlike sines and cosines, individual wavelet functions are
quite localized in space; simultaneously, quite localized in frequency or in characteristic scale. As we shall
see below, this particular kind of dual localization of wavelets renders a large class of functions and operators
sparse, or sparse to some high accuracy, when transformed into the wavelet domain.

One of the most interesting and promising wavelet applications is linear algebra. The basic idea is to think
of an integral operator (that is, a large matrix) as a digital image. Suppose that the operator compresses well
under a two~dimensional wavelet transform, i.e., that a large fraction of its wavelet coefficients are so small as
to be negligible. Then any linear system involving the operator becomes a sparse system in the wavelet basis.

Our interest is in finding its properties of the wavelet transformed matrix. In other words, we want to solve

Ax = b. (21)
We first wavelet—transform matrix A and vector b such that
A=WAWT b=Wb, (22)
where W represents the one-dimensional wavelet transform. Then Eq. (24) can be transformed into

Ax = b, (23)

x = WTx. (24)
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We recall that the condition number of a matrix is defined as the ratio of the largest and the smallest
singular values. If a matrix has a null space (the actual null space or a null space for a given accuracy),
then by the condition number we ascertain the ratio of the largest singular value to the smallest singular
value above the threshold of accuracy. The condition number controls the rate of convergence of a number of
iterative algorithms for solving linear systems ; for example the number of iterations of the conjugate gradient
method is O(4/x), where & is the condition number of the matrix. After applying a particular preconditioner,
the condition number &, of the operator is uniformly bounded with respect to the size of the matrix. In the
following examples, the standard form D,, of the periodized second derivative D of size M x M, where M = 2™,
is preconditioned by the diagonal matrix P ,

D? = PD,P, (25)

where P,; = §;27, 1 < j < m, and where j is chosen depending on 4, so that N—N/2'"1+1 < 4,1 < N-N/27,
and Pprps = 2™. That is,

2 0 o .- 0 0 0

o 2 0 -- 0 0 0

0 0 2 0 0 0

P=1!-- ...

0 0 0 2m-1 0 0

o 0 OO -- 0 2™ 0

o o o0 - 0 c 2™

For example, the matrix D is given as follows:

-2 1 o -~ 0 0 1
i -2 1 -~ 0 O 0
0 0 6 .-~ 1 -2 1
1 0 o --- 0 1 -2

In Table I we compare the original condition number & of D, &, of Dy, and &, of DE. Such a preconditioning
technique is useful to treat singular matrix.

From the above FWT, the linear equation which is nearly singular can be solved by a standard iterative
method. In this paper, we take as an example the flux reconstruction problem in reactor analysis without
preconditioning.

Reconstruction of pinwise flux and power has been of much interest in reactor analysis. There are many
methods such as form function method and global/local iteration method5. We can divide them into two kinds
of methods for reconstruction of pinwise heterogeneous flux from nodal values. The one finds the homogeneous
distribution and then multiplying form function, the other constitutes solving a linear matrix equation using
boundary flux or current.” We try to develop the latter method using fast wavelet transform (FWT). Here
our interest is how to solve the linear equation overcoming singularity occurring when we perform fine-mesh
calculation by a finite difference scheme.

FWT converts the matrix equation to a fast form, that is less singular, to be iterated. We may also select
other methods, such as singular value decomposition (SVD), multiplying the transpose matrix which is similar
to conjugate gradient (CG), or a direct inverse scheme. But the results show that the FWT method is fastest
among the above methods.

In the reconstruction problem, we have nine nodal values : four corner point fluxes, four surface average
fluxes and one nodal average flux. We also have multiplication factor ky;. From the nine nodal values, we can
find surface flux or current distribution which can be used as boundary conditions. AFEN3?, which is analytic
function expansion nodal method, is used to find the surface boundary condition. Then the diffusion equation
may be solved in the usual way. But it happens often times that the system is not convergent by standard
iteration methods, because the spectral radius of the iteration matrix is greater one. However, if the system is
transformed by wavelets, the spectral radius may be reduced below one and any iterative schemes are able to
solve the system.

The two—dimensional two—group diffusion equation,

1 1
—u51)é1 — —vEjads = O,
kay ) ks 1292 (26)

—VD; Vs + Bazdz — L1261 = 0,

—VD, -Vé1+ (E12+ a1 —
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can be transformed, when we reconstruct pinwise heterogeneous flux, to a matrix equation as follows:
Ax = b, (27)

if we discretize Eq. {26) by a standard finite difference box scheme.

Eq. (27) can be transformed as in Eq. (23), so as to achieve convergence. We solved the above equation
by Gauss-Seidel and successive overrelaxation {(SOR) methods. We tested our scheme on sample problems.

First we take a simple one—dimensional reconstruction problem of which solution is known to us as cosine
shape. The boundary condition we used is current boundary condition {(Neumann boundary condition). Figure
2 shows the configuration of the problem and the results are provided in Table II. We compare the computing
time and spectral radius of the Jacobi matrix. From the results we find that FWT converts the property of
the matrix to converge by standard iterative schemes.

As a second test, we take a two—dimensional eigenvalue problem, that is, a two-dimensional two-group
diffusion equation. We also use Neumann boundary condition. The configuration is shown in Figure 3 and the
cross section data we used are given in Table III. We also compare the computing time and spectral radius
of the Jacobi matrix in Table IV. We also observe that FWT can decrease the spectral radius of the Jacobi
matrix below one.

From the results we also find the FWT method is faster than the other methods in solving near-singular
problems.

4. Conclusions

The fast wavelet transform (FWT) has high potential for many applications. For a linear equation system,
we developed a new solver with FWT. One of the properties of FWT is reducing the spectral radius of the
Jacobi matrix so as to obtain convergence of the iteration. This property was used in this study to the flux
reconstruction problem in reactor analysis. Usually, when we reconstruct the flux, the iteration matrix becomes
nearly singular, so we cannot use standard iteration schemes. In this problem, FWT did reduce the spectral
radius of the iteration matrix. We conclude that it is worthwhile investigating further FWT for its fuller
utilization in nuclear engineering problems.
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Table I
Condition Number of the Matrix of
Periodized Second Derivative

matrix |Daube- condition number
size chies’
o g | B8] | e | order x *u %
3 1.14666E+02 | 8.08654E+00
32x32 1.04087E+02 — —
- 6 1.04916E+02 | 5.20035E+00
] 2 3 4.58204E+02 | 9.09907E+00
ik @ | A 8| | 64x64 4.15350E+02
. 6 4.18739E+02 | 5.26105E+00
7 A | B &
— 3 1.83078E+03 | 1.00210E+01
7 AlA 8 & 128128 1.66041E+03 [—— -
. 6 1.67577E+03 | 5.28970E+00

Fig.1 Representation of the decomposed matrix

| * Boundary condition : #(0) = ¢(1)=0

[ 1
I ~ -
0.[; 06 10 * To reconstruct flux in [0.2,0.6] with

o1

current boundary condition
Fig. 2 Configuration of sample problem 1

Table II
Comparison of Computing Times and Spectral Radii
matrix Dﬂl.lbe" computing time (sec) spectral radius of Jacobi matrix
K chies FWT
size order Gs [ sor| €G | svp FWT original
N=3 091 0.38 0.97988
32x32 0.36 052 1.00008
N=6 0.93 0.47 0.96072
N=3 6.70 1.80 0.99017
64 X 64 2.34 317 1.00020
N=6 6.71 1.79 0.98073

[«11.2 cm -]

3 Table II
J=0 Cross Sections for Sample Problem
D )y vx DX
t a ’ 1
ype | 8rouPtm) (em™) (cm {) (cm?l)
=0 ¢=0
1 1.500 0.0130 0.0065
fuel 0.020
2 0.400 0.1800 0.2400
— 1 1.700 0.001 0.000
D fuel 6‘;1'0 water 0035
uet 2 0.350 0.050 0.000
[[] water bole 1 1.1133 | 0.0836661 | 0.000
control 0.037529
. control tod rod 2 0.18401 | 096726 0.000

Fig. 3 Configuration of sample problem 2

Table IV
Comparison of Computing Times and Spectral Radii
computing time (sec) spectral radius of Jacobi matrix
Daubechies order FWT ‘ o

Gs SOR CG SVD FWT original

N=3 1395 | 7.32 0.97872
3053 | 2594 1.02256

N=6 1274 | 11.36 0.97249
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