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Abstract - While the z-transform method is a basic
mathematical tool to relate the signals only at the sampling
instants in analyzing and designing sampled-data control systems,
the modified z-transform which is a variation of the z-transform
is widely used to represent the details of continuous signals
between the sampling instants. Regarding the modified
z-transform method, some properties were established to relate
the modified z-transform to the regular z-transform. This paper
will show that these properties, in their current forms, cause
some analytic problems, when they are applied to the signals
with discontinuities at the sampling instants, which accordingly
limit their applications significantly. In this paper, those analytic
problems will be investigated, and the theorems of the modified
z-transform will be revised by adopting a new notation so that
those can be correctly interpreted and used without any analytic
problems in the analysis of sampled data systems. Also some
useful schemes of applying the modified z-transform will be
developed.

L. Introduction

In the sampled-data control systems, some of the continuous
signals of the controlled plant are sampled periodically and those
sampled values are manipulated through control-law-based digital
computation and applied to the plant and held constant up to the
next sampling instant. To represent the relation of these signal
values at the sampling instants, the z-transform method is used.

The definition of the z-transform of a continuous signal ()
with the sampling time T [1-4) is given below for the purpose
of cross reference and comparison with the new development in
this paper:

Q@) =Z (A =Z ()] =2 [kD)= [kDz™ ()
=d0)+d Dz ...+ (kD2 + ..,

where C(s) is the Laplace transform of c(#). Referring to (1),

g)=e"

the z-transform of a typical engineering signal
becomes

o
o=zl -2t 1= B o

Since the z-transform takes the values of a continuous signa!
only at the sampling instants, it is not possible to recover from
its z-transform the exact behavior of the original function
between the sampling instants. The inverse z-transform only
gives the Ath term ¢, of the periodic samples of the original

function o(#), or the function value at time &7, (kT),if T
is understood as the sampling period.  When the notation of the
inverse z-transform is given as

a=cdiD=2""[C2], (3
the counterpart of (2) becomes

s=sUD=2" [ 35

]=2* @

Fig. 1 shows a basic block of sampled-data control systems.
It is assumed that the sampler is an ideal impulse sampler with
sampling time 7" . The plant G(s) is also assumed to respond
to the impulse. The impulse response of the plant g(#) is the
inverse Laplace transform of G(s). When the input e(#) is
impulse-sampled and applied to the plant, the output (¢ at time
t=kT can be obtained by the following discrete convolution:

kD) = $iaT- DD = SgkT~ Dl 6)

In (5), the causal property that g(#)=0 for #<(0 was used in
expanding the upper limit of the running variable j up to
infinity. Taking the z-transform of both sides of (5) yields [1-4]

C(2) = g olkDz"
= 24 28k T—De(iTz™" = G B(2) ®)
The relation (6) makes it possible to use the z-transform method

in formulating the pulse transfer function in the sampled-data
system.
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Fig. 1. A sampled-data control system. The sampler is an idea!
impulse sampler with sampling time T . The plant G(s)
is assumed to respond to the impulse.

As an illustrative example, consider the case that the input

E(s)=1/s and the plant G(s)=1/(s+a). Applying the
z-transform to the input gives
e[l S a2z
Ba=z[{]= =5 g
and. G(z) was evaluated already and given in (2). Substituting

(2) and (7) into (6) gives the z-transform of the output:
2
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Applying the inverse z-transform formula of (4) to (8) yickds the
output scquence:

e =k = —1—__16‘-7,?[1— e e,

=1+e T+e ¥4,

9)
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As given in (9), when ¢ increases from (k—1)T to kT,



oD increases by e~ ™7, and in this pattern, (k7Y approaches
1/(1 = e™°T) exponentially as % approaches infinity. However,
neither the behavior of <{#) between the sampling instants nor

the continuities at the sampling instants can be obtained by (8)
or (9).

II. The Right and Left z-Transforms

While the input and output signals of the digital block and the
input to the plant are only updated at the sampling instants, the
internal state variables including the plant outputs are still
continuous  signals except possibly jump discontinuities at the
sampling instants.

Since the system in Fig. 1 is of first order and the unit
impulse is applied to the plant every T sec, the response of the
system during the interval AT<kT+ T can be ohtained by
applying the superposition theorem on the delayed impulse
responses of g(#—jT)=e """ ;20 Then (#) becomes

o« = Bt~ iD= Fem a0

(1=~ DTy o un
i—e " €
for kTSKKART+ T and k20. Fig. 2 shows the response of
o) with T=1 and a@=1. As shown in Fig. 2, () has
jump discontinuities at the sampling instants &7 .
Substituting #~1 for % in (10) gives
o == oty imam an

1—e 47

for AT— T<i(kT and %=1. Since the system is considered

causal, (D=0 for {0 for both of (10) and (11). Setting
t=4kT in both (10) and (11) gives, respectively,
. (1= g™ %407 )
AkTT) = T—ooT (12)
and
_ _-aT
(kT) = 'Qx_:%l e T (13)

where t=4&T" and f=kT" mean that the time variable ¢
approaches 47 from the right-hand side and the left-hand side
on the time axis, respectively. The jump d; at the sampling
instant at ¢=4T, k=1,2,..., can be obtained by subtracting
(13) from (12):

di=dkD) = c(kT") = (RT")=1, k21 14
The jump at t=0 is also 1 since 0*)=1 from (12) and

«07)=0.

Fig. 2. Output response of the sampled-data system in Fig. 1.
for the unit impulse train input. The response shows
jump discontinuities at the sampling instants.

Comparing (12) with (9) reveals that (k7)) obtained by
taking the inverse z-transform of ((z) in (8) and accordingly
that used in (6) for defining ({2) actually means {£T") and
not o(kT"), which has been common understanding in this field.

By the same argument, g(kT) in (6) represents g(&#7"). This
clarification takes an important role in developing the material of

this paper in regarding the modified z-transform [5-8]. For the
purpose of comparison and easy cross reference for the material
developed in this paper, the z-transform of (kT ) of (13) is
evaluated below. This z-transform is defined as the left
z-transform and is denated C(2):

29 @ (l__ —abT) —at -
C™(2) =Z.;)L‘(k7‘-)2-‘=§ =6 T e T us)
—-aT
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where «(07)=0 was used. Similarly the right z-transform
C*(2) is defined as the z-transform of (47™), and it turns
out that C*(z) actually means ((2) in (8). If a signal does
not have jump discontinuity at any sampling instant, then its left
2-transform and the right z-transform are the same, otherwise
the two transforms are different from each other. -

1II. Analytical Problems and Revisions of the
Properties of the Modified z-Transform

To handle the response of a continuous signal between the
sampling instants, variations of z-transform were developed [5-9].
The modified z-transform is defined as

ZILD) = Cem)= B kT~ T+ mDrz™ as)

where §¢m<¢1 and the signal is delayed by (1—m)T . Since
(D=0 for <0, (16} can be written as

ZldDl= Clzm) =27 B} kT + mD2™ an

Consider the system in Fig. 1 again. The output {9 at
time f=kT+ mT is expressed by the discrete convolution:

AT+ mT) = JghT+mT= i TIeliT) (18
= ST+ mT—iDeliD)

Substituting (18) into (17) and performing some algebraic

manipulation gives

Clz, m=z2" g(‘,%g(kT+ mT—iDeliTz"*
= ge(mz"‘z" (‘_:iog( [k=AT+mDz"*" a9
= 2,eiN2" "Gz, m) = B(2)C(z, m)

where G(z,m) is the modified z-transform of g£(#). Equ. (19
is the modified z-transform counterpart corresponding to (6) of
the regular z-transform relation.  The relation (19) is the
fundamental theoretical background to make it possible to
establish the z-transform equation to relate the sampling instants
signals {sampled signals) to the values of a continuous signal at
time being skewed by mT from every sampling instant,

By the definition of the modified z-transform given in (17), G{z, m)

of G(s) in Fig. 1 is evaluated as

Cam) =z i7]= 2o @)
- amT
= R

Substituting (7} and {20} into {19) gives

—amT
= - € 'z _ _
KNz, m) =Gz, m)E(2) D=
The case m=] in the modified z-transform means that the
signal s not delayed, which accordingly should imply that
(2, m)= C(z). However, substituting m=1 into (17) gives
Kz, M) mmy=Cl2,1)

=27 S L+ 11Dz = C(2) - «0) @
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which s an established property to relate the modified
z-transform to the regular z-transform [1-3). In this paper,
however, it will be shown that there is a serious analytic
misinterpretation of the definition of the modified z-transform in
deriving (22). An example which invalidates (22) will be given
first, and an investigation and a correction will be made
mnalytically for (22),

Consider the system in Fig, 1 again.
in (21) gives

Az, 1)= 2z, M) =

Simple setting m=1

—nTZ

_ e

(z—(z~e°D
Now it can be immediately noticed that no matter whichever
c(0) between (0*)=1 and {07)=0 is used, C(2) given
in (8) and C(z,1) of (23) do not validate (22). The serious
problem is that although the relation (22) has been established
without any doubt in the well-cited references{1-4], the theory is
not confirmed even by a typical example,

The discrepancy demonstrated with the above example should
be investigated analytically. The parameter m in (16) or (17)
for defining the modified z-transform can never be greater than
or equal to I. If m=]1 then the 2 transfer relation
(2, m) = G(z, m)E(z) established in (19) becomes invalid since
the convolution summation will include some extra terms. If it is
the case, the modified z-transform is totally useless. Therefore it
should be emphasized that the proper range of m for validating
(19) is 0sm<]l.

By the insight given in the previous paragraph, the condition
m=1 used in (22) should be understood as m=1", with
which (22) is now revised as follows:

Azl ey =z, 1) =27 QLo+ 117D
=C@D-0)=C(2
where ¢(07)=0 was used. Now comparing (15) with (23)
confirms the validity of (24). Note that (0%) and (07) are
not involved at all in the final result of (24). Note also that
when ¢(0%)=0, which means that (f) does not have jump
discontinuities at the sampling instants, all three of the right, left,
and regular z-transforms become equal and therefore (22) is still

valid for this limited situation, and in either of the case, (24) is a
general formula.

(23)

(24

By the similar approach given above, all the modified
z-transform theorems are revised and/or clarified:

Multiplying both sides of (17) by 2 gives

z2C(z, m)= Z;)c(kT+ mT)z"* (25)
and its inverse z-transform gives

(kT+mT)=Z"[2((z, m)] 26)

which is o(#) for the time duration AT<HAT+ T for k=0
and when m is varied between zero and one. Setting m=0*
and m=1" in (26) gives, respectively,

kTH)Y=Z"2C(2,0%)] , k=0 @n
and

AL+ 11T)=Z""2C(2,17)) , k=20 (28)
Setting m=0" in (25) gives

CH(2)= C(2)=2((2,0") (29)

The inverse z-transform of (16) gives another expression of
o8-

kT— T+ mD =2 [z, m)] 30
where the time duration is (k—1)T<# kT for k20. Note
that the time interval with k=0 for (30) is — T<#0, for
which ¢({) becomes zero. Setting m=0" and m=1" in (30)
gives, respectively,

([e-1TY=2"1C2,0], k=0 &)
and

c(kT‘)=z“[¢(z.1‘)] . k20 (32)

and setting m=1" in (16) gives

C (2)=Cz,17) (33)
which was given in (24), but repeated here for grouping the
related formulas.

When a signal has jump  discontinuities at  the  sampling
instants, their sequence form is theoretically of interest, The
2-transform of this sequence can be obtained from C *(2) and
C™(2) given in (29) and (33), respectively:

XN2)=C*(2)~ C (2)=20(2,0") — C(2,17) (34)
and its inverse z-transform gives the actual jump sequence:
dy=dkT)=2""120(2,0%) - C(2,17)] , k=0 (35)

In summary, once the modified z-transform C(z,m) is
derived, then the z-transform ((z), the time responses c(#) for
RT<KET+ T, kT*), and (kT7), and the jump
discontinuity sequence d{(kT) can be obtained by (29), (26), (27),
(32), and (35), respectively. For example, the output o(#) of Fig.
1 between the sampling instants can now be obtained by taking
the inverse z-transform after multiplying 2z to (21):

—amT 2
e
C(kT+ mﬂ Z (Z_EwaT)(Z“‘ 1) (36)
e oy

1-e
which is the same as (10) with the substitution of m=t/T—k .
IV. Conclusions

In this paper two z-transforms were defined for a continuous
signal {#» which is the output of a continuous plant G(s)
which again is subject to the impulse input: the right z-transform
C*(2) and the left z-transform C(z). It can be be easily
concluded that C (2) should be the same as C*(z) in case
that o(#) does not have any jump discontinuity, which, however,
is not always the case. It tums out that the textbook-definition
based z-transform ((2) is actually the right z-transform

C*(2). Using the new definitions of the z-transform, some
revisions were made on the theorems of the modified z-transform
so that they can be used without any analytic problems in
analyzing the continuous signals, even with jump discontiunities
at the sampling instants, of sampled data systems.
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