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Abstract - The z-transform method is a basic mathematical
tool in analyzing and designing sampled-data control
systems. However, since the z-transform method relates only
the sampling-instants signals, another mathematical tool is
necessary to describe the continous signals between the
sampling instants, For this purpose the delayed and the
modified z-transform methods were developed, The definition
of the modified 2z-transform includes a sample in the
interval [— T,0] of the original signal in its series
expression, where the signal value is always zero for any
physical system., From this reason one step skew of the time
index always appears in its application formulas. This
introduces an unnecessary operation and a gap in linking the
mathematical formula and its physical interpretation,
Considering the conceptual difficulty and application
inconvenience, a method of using the advanced z-transform in
analysis of sampled-data control systems is developed as a
replacement of the wmodified z-transform, With one
formulation of the advanced z-transform, now it is possible
to relate both the signals of the sampling instants and
those in between without any complication and conceptual
difficulty,

I. Introduction

In a sampled-data control system, the input and output
signals of the digital block and the input signals to the
plant are only updated at the sampling instants, However,
the internal state variables including the plant outputs are
still continuous signals except’  possibly Jump
discontinuities at the sampling instants, VYhile the
z-transform is used to represent the relation of the values
of these signals at the sampling instants, the wodified
2-transform method can be used to relate a continuous signal
at the off sampling instants to those signals at the
sampling instants [1-5].

Fig. 1 is a basic block of sampled-data control systenms,
which includes an input E(s), a sampler with sampling time
T, a plant G(s), and its output ((s). The inverse
Laplace transform of G{s) is the plant’s impulse response
and is denoted by g(#). When the sampler is assumed to be
an ideal impulse sampler and the plant G(s) is also assumed
to respond to the impulse, the output c(f) at time f=kiT
can be obtained by the following discrete convolution:

(BT = J3ekT= IDeliD) = SgkT=iDGD (1)

where g(#)=0 for 0 was used in extending the upper
limit of the running variable ; to infinity, The
z-transform of the output () is defined as
(2)
Q@) =0 =Ad D)= ALkD]
=§L(k7')z_"
= A0+ A Dz + o+ (kDI
Substituting (1) into (2) gives the expression of the

z-transform of ¢(#) in terms of those of the input e(#) and
the plant g(# [1-4):
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Fig. 1. A sampled-data control system. The sampler is an
ideal impulse sampler with sampling time T . The
plant G(s) is assumed to respond to the impulse,

Once G(z) and FE(2) are evaluated, ((z) is obtained by
(3), from which the time sequence ¢, or (k7)) with T

being understood as the sampling time can be evaluated by
the inverse z-transform operation:

= (kD) =Z"'[ (D))= Z"'[G(2)E(2)] (4)
The above relation gives the output c(f) only at the
sampling instants, and it does not give any detail of the
behavior of ¢(f) between the sampling instants,

To handle the response of a continuous signal between the
sampling instants, the delayed z-transform and the modified
z-transform were developed [5-9]. The modified z-transform
of a continuous signal () is defined as the z-transform of
the original signal delayed by (1—m)T :

ZJJdD) =C(z,m)=Z‘bdkT—T+mT)z_* (5)

== T+m)+dmdz""+ T+ mhz" 2+
where (0{m<]. Since o(H=0 for 0, (5) can be written
as

ZJ D) =Ca,my=2"' 2 ckT+mDz""

=dmDz" '+ T+mDz" 4+ (6)
+ kT~ T+mDz ™+

Multiplying both sides of (6) by z gives

zaz,m)=gc(k7‘+ mTHz"* (7)
and its inverse z-transform gives
KT+ mTy =22z, m)] (8)

which is o({) for the time duration RT<&K AT+ T,
and when m is varied between zero and one,

Consider the system in Fig. 1| again., The output () at
timé ¢=kT+ mT is expressed by the discrete convolution:

o kT+mT) = gg(kT+ mT—jT)e(§T)

k20

(9)
= gmn mT— e T)

Substituting (9) into (6) and performing some algebraic
manipulation gives [1-4]
| B3 _ : -4
Clz,m) =27' 24 2g(kT+mT—De(iDz
= E(2)G(z, m)
where G(z,m) is the modified z-transform of g(#). Once

G(z,m) and FE(2) are found, C(z, m) is obtained by (10),
and substituting the result into (8) gives

A kT+mT=Z""2G(z, m)E(2)]

(10)

(1)



As given in (10) and (11), the modified z-transform
method is straightforward in describing a continuous signal
of any sampled-data system between the sampling instants.
However, as shown in (6) and (8) or (11), its related
formulas contain 2z or 2z~ ! tere in their expressions,
representing advance or delay of one sampling interval.
Careful observation of (11) reveals that the term 2z is
wultiplied to G(z, m}E(z) before taking the
z-transform operation for o(kT+m7T) to cancel the term
z~! which appears as a factor in the expression of ({z, m)
vhich is defined by the same way as given in (6), If the
extra z or z ! term is properly taken care of, this is
not a problem in the mathematical point of view, However,
this introduces a double folded gap in linking the
mathematical formula and its physical interpretation, and
also introduces inconvenience in handling the signals in the
z domain,

Notice that, as given in (5), the definition of the
modified 2z-transform of the (# includes o— T+ m7),
the function value at ¢=— T+ m¢, although it is zero,
The meaning of the modified 2-transfors transfer relation
established in (10) is that it relates the input sequence
applied to the plant from ?=( to the output sequence
sampled periodically starting from t=—(T—-mT)<0
through the transfer function G(z,m). The input at and
after t=() can cause an effect on the output at and after
t=0 at best. Therefore it can be doubted that, strictly
speaking, the concept of the transfer relation of (10)
violates the cause and effect rule associated with physical
plants, The reason that {10) is still valid is that (¥ at
t=—T+mt { 0 due to input e(f) at and after {=>0 is
set to zero (using g(#)=0 for #(0), and actually does not
appear in its wmodified z-transform series expression,
eliminating the potential noncausality problem, However, as
pointed out in the previous paragraph, the term z~! or 2z
term remains

inverse

in the related formulas of the modified
z-transform transfer relation,

I1. The Advanced z-Transform and Analysis of
Sampled-Data Control Systems

Considering the conceptual difficulty and application
inconvenience of the modified 2-transfors method, another
variation of the z-transform method which relates the input
at and after ¢=0 to the output at and after ¢=0 is
developed in this paper,

Consider the following variation of the z-transform of a
continuous signal o(#):

Z[d)] = Uz, &) =ZAkT+ aT)]
= E}c(kTﬂﬂ)z" (12)

=daD+T+aDz"" +--
+ dkT+aT)z™ "+

where 7T is the sampling time and (<a{l. Since the
above definition is the z-transform of function o(f+aT)
which is ¢(f) advanced by aT in the time axis, the above
z-transform is called the advanced z-transforw of ().

Then, the inverse relation of the advanced z-transform
becomes

kT+aT)=Z""[C(z, a)]
With a=(, the signal is not advanced and the advanced
z-transform becomes the regular z-transforw, or

Az, )l 4mp= ((2,0) = ((2)

The advanced z-transform of a typical signal g(#)=e ¥
becomes

(13)

(14)

Gza) =z 517 ]=2de (15)

- - - —aaT. z
=Z[e n(l+¢'l)]=e aaTZIe al]=e aa 2_2_01_

Note that the advanced z-transform of e “ is the

2-transform of ¢ itself multiplied by e~ *7 , which
carries the shape of the original signal variation in the
interval (O<KT . It should be mentioned, however, that
this fashion is individually applicable to a single mode
component signal. The formulas of the advanced z-transform
of the practical engineering signals can be derived easily
based on the above formulation or simply multiplying z to
the formulas of the wodified z-transform if available, For

example, the advanced 2-transform of the unit step
function, u,(#), can be obtained by setting a=0 in (15):
z|t]=zlu(m=2Aut+aDi= 72 (16)

The advanced z-transform of sinwf is derived as
Z [ sinwt] =Zsinu(t+aT)]

= coswaT Z[sinwf] + sinwaT Z[ coswi] (17)

2(zsinwa T+ sinw(l—a)T)
22— 2zcoswT+1

Considering function sinwf to contain two modes, —jw
and jw , the above result can also be derived as follows:

Zf sinwt] =Za[—2%(e’""'—e""‘")] 08)

- ‘lef(eMTZ[e’“"]+e = iwaTy[ o= r])
In order to establish a transfer relation using the
advanced z-transform method, first o(#T+ aT) needs to be

expressed in terms of g(f) and e(f), which is the same as
(9) when m is replaced with a :

kT+aT) = lz_;g(kT+ T jTeiT) o
= ;;g(kr+ aT—iDeiD

Taking the advanced z-transform on both sides of (19) gives
z,0) = ac(kT-!- aDz"*

= 3 518k T+ aT= DDz

= 5D BT aT—i D2

= 3ein27 3} skT—iT+aDz" 4

1= —1=0
= 3 D2 G2.0)= B2, 0)

The above relation is the fundamental theoretical background
to make it possible to establish the z-transform transfer
equation to relate the values of a continuous signal at time
being apart by a7 from every sampling instant to the
values of other signals, either discrete or continuous, at
the sampling-instants,

Consider the systes in Fig, 1 again, If G(s)=1/(s+1)
and E(s)=1/s, then ((z,a) is evaluated by substituting
(15) and (16) into (20):

C(z,0) =G(z,0)E(2)=e *T—E—5 % (21)

z—e T z—1

The output <({) between the sampling instants can now be
obtained by taking the inverse z-transform of (21):



2 ]e—mﬂ
(2"2_”1)(2" 1) (22)
o makE DT
J 1T T ey

- l_e—aT

kT+aT) =27}

where k>0 and (<a{l. Setting a=0 (no advance) in (21)
and (22) gives, respectively,

2
= _——
A2 =z dlemo= "= =m0y (23)
and
) = ]—e n(k+l)T 11 ]_e-a(_k:rl)r )

With the time index % taking integer values from 0 and
a being any fractional value between 0 and 1, (¥ for any
{ including the sampling instants can be evaluated using
(22), Fig. 2 shows the response of () for T=] and

a=1. As given in (24) and as shown in Fig. 2, when ¢
increases from {(k—1)T to kT, 8 increases by
e ™ and in this pattern, c(kT) approaches 1/(1—e”%")

exponentially as % approaches infinity. However, neither
the behavior of c(#) between the sampling instants nor the
continuities at the sampling instants can be indicated by

C(2) of (23) or (kT) of (24).

Fig. 2. Output response of the sampled-data system in Fig.
1 for the unit impulse train input, The response
shows jump discontinuities at the sampling
instants,

In the practical sampled-data control systems, the

digitally processed sampled signals are applied to the plant
through a zero order hold device (ZOH). When a ZOH is
embedded between the sampler and the plant, the advanced
z-transform of (#) of Fig. 1 becomes

Cza) =218 a9 = 1= a9
= (1= €)o7 @
=(1—z“')zq[ﬁ(f1]

The advanced z-transform method can be applied to
closed-loop sampled-data systems, Consider a simple closed
loop system given in Fig. 3. The 2z-transform and the
advanced z-transform can be applied to the discrete signals
and the continuous signals, respectively:

C(z,a) = G(2,0)E(2) (26)
E(z,a)= R(z,a) — GH(z, @) E(2) (27)
F(z) = R(z) — GH(2)E(2) (28)

Solving for E(z) from (28) and substituting the result in

{26) and (27) gives, respectively,
Cz,a)= —lj‘_G‘%““]ﬁ);)‘R(z) (29)
_ _ _GH(z,a)
E(z,a)=R(z,q) 1+ CH(2) R(2) (30)

The output and the error responses between the sampling
instants can be obtained by taking the inverse z-transforms

on (29) and (30), respectively:
S B & C-N:) I
dkT+a) =27 7§ Gt RD] (3n

Fig. 3. A colsed-loop sampled-data control system

GH(z,a)

A kT+ aT)=Z“‘[R(z,a)— TR

R(z)] (32)

111, Conclusions

In this paper a new variation of the z-transform which
removes the 2z ' term of the modified z-transform was
introduced. While it is not possible to relate the present
input to the past output, relating the present input to the
future output is compliant to the principle of cause and
effect. Since there is no time index skew, the expression
of the new z-transform is self explanatory, removing the
conceptual gap between the behavior of the sampled-data
system and its mathematical model which was observed with
the wmodified z-transform. Therefore the advanced
z-transform is physically and mathematically more natural
than the modified 2-transform,

Although the advanced z-transform does not give any
additional information than the modified z-transform does,
with the new method, one mathematical formulation describes
directly both the sampling-instant signals and a continuous
signal at off the sampling instants, Also the new method is
more straightforward in its derivation, The theorems
established with the modified z-transform for analyzing
sampled-data control systems are equally effective to the
advanced z-transform with minor modifications, As a
conclusion, the advanced z-transform is a good replacement
of the modified z-transform,
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