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implementation of Stable Adaptive Neural Networks for Feedback Linearization
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Abstract - For a class of single-input single-output
continuous-time nonlinear systems, a multilayer neuwral
network~based controller that feedback-linearizes the systm
is presented. Control action is used to achieve tracking
performance for a state-feedback linearizable but unknown
nonlinear system. The multilayer neural network(NN) is used
to approximate nonlinear continuous function to any desired
degree of accuracy. The weight~update rule of muitilayer
neural network is derived to satisfy Lyapunov stability. It is
shown that all the signals in the closed-loop system are
uniformly bounded. Initialization of the network weights is
straightforward.

1. infroduction

Nonlinear control has received a lot of attraction for the
past two decades. Controlling nonlinear systems by 'feedback
linearization’ has experienced a growing popularity.
Unfortunately, this type of control requires exact dynamic
equations of systems[1]-{4). Thus, recently many Al theories
have been used to control nonlinear systems without such an
priori knowledge around nonlinear function of plant(5]-(9],
But, generally, il they are used for approximation, it is
difficult to control nonlinear systems precisely. Because there
are function approximation error and higher terms coming
from Taylor expansion, Accordingly, dead-zone
technique was used for cancelling them on condition of
sufficiantly small approximation errorf6], but it has many
restrictions practically. Therefore, the object of this paper is
to design stable controller and compensate for them. In order
to attain  this object, we introduce control input which
consists of a feedback linearization portion provided by two
NNs and a robustifying portion that ensures stability. NNs
weights are updated on-line according to a rule which
satisfies Lyapunov stability.

This paper is organized as follows. In section 2, we define
plant dynamic equations for building up this theory and
illustrate the concepts of input-output feedback linearization.
In section 3, we design control input. Section 4 presents
adaptive law by Lyapunov stability to update NNs weights.
in section 5, we analyze convergence and stability of the
closed-loop  system. Finally, simulation results are
demonstrated.

series

2. Problem Statement and Feedback Linearization

Consider a state-feedback - linearizable system having a
state-space representation in the controllability canonical form

%) =X
X gy =Xy
%= f2)+ g@u @24
y=x
or equivalently of the form
= A+ gDdu, y==x 22)
where fand g are unknown continuous functions, 2 and

y are the input and output of the system, respectively, and
=[x xr=x,)7 =[x x=x'"" "7 is the state vector of the
system.

Assumptions :

() Ax) and g(x) are bounded and uniformly continuous
functions.

@) {ANISFLR) for all x, where f (%) is known,

3) 0<g(D<e<g (s for alt

£.(2) are known.

x, where gz and

(4) state variable x is available for measurement.
With these assumptions, the control law can be defined as

o e
u= g(z)( x4+ 2.3)

®— ) where v is a new

and the system becomes y
control input. If the control goal is for the plant ouput y to
track 2 reference trajectory y., the control input v can be
defined as

v=y 0 e ke bk et ke = ETetyl™  (24)
BT p={kykyyk]’  and

such that

e=1le ee
Ry ka-y Ry
§"+ks" ) 4o+ k, is Hurwitz. Then the control input(2.4)

where
are chosen the polynomial
results in the error equation e'™ + kle"’—”+ et ke=0

with & #) = y () — () being the tracking error. It is clear

that ¢ will approach zero.



3. Contro! Input Design

If we know the exact form of the nonlinear functions, then
the control is

u= Rb(-ﬂzH £ e+ v 6D

Since we assume that these functions are not exactly known,
we shall choose control action

= —1__. T (€
ue= = ﬁ') —Rx 8+ £Te+9) (32

where the estimates Ax, 6 and Fx, 8,) will be
constructed by NNs, However, (3.1) is not same as (3.2)
because of approximation error. Thus, we solve this problem
by appending auxiliary input #; to the wu.. That is, the
final control is
U= u.+ u, 33)

Applying (3.2) to (2.2) and after straightforward manipulation,
we abtain the error equation
eM=— kTe+[Ra. 89— A0 +[ &z, 8,)—g(Du.

— g(Du,

or equivalently

e=A.e+ b [(Rx 09— A0) +(2a, 8,)— (D,

—g(2ul (3.4
0 1 00 -0 0 0
0 0 100 0 0
where A= | - R R N Y T R
0 0 00 0 1 0
—k, Lol 7O U TR PR —ky 1

Since A, is a stable matrix, there exists a unique positive

definite symmetric #Xn matrix P which satisfies the
Lyapunov equation [1].

ATP+PA.=~Q 35)

where @ is an arbitrary nxn positive definite matrix.

Let V¢=-L e Pe, then using (3.4) and (3.5) we have

V.——— £"Qet+ €"P b [(Rz, 8)— A )
+(Za 6, - gD~ g Du])
<=1 eTQe+| £"P ol 1Rz )] +1A)

+ &a Jud+le@ul) — e"PheDu, (3O
In order to design %, such that the right-hand side of (3.6)

is negative, we need to know the bounds of Ax) and g(x).
We choose the auxiliary input %, as

u, = sat( ¢"P ch)-g—,b; [ Rz 8]+

+&x, 8)u]+lglDul) 3D
1 it ¢"P b, >4
where  sat( ¢"P b.)= -1 if &P b <-4
T
e Z’lzc oth .

: T g(x) [+ gl x)ud
There exists 4< ¢ Pb, PrE) _——_—‘Iﬂz)lﬂg(x)u‘l

Substituting (3.7) into (3.6), we obtain
Ves [|Rx, 89|+

H & 0wl +leud - £ (|Rs, 8)]+1/42)

+| &z, 8ud HelDudl

<- % 2T0e<0 a8

Thus, we can guarantee that V,ST’( oo,

4. Adaptive Law Design

In NNs, we define optimal weights[9]
8, = arg min 5[ max .| Hx 8)— A
8, = arg min g [max . |2z 8,)- D] @D
where 2,={ 8,:| 84<M;}, Q,=1{ G,:] 8/<M,} and
M, and M, are positive constants.

Taking the Taylor series expansions of Ax. 8,) and
2x, 4,") around 8, and 4, we have

Ha )7z 87)= ¢,’(M>+o(|m2)

2 0) -8z 8= ¢,’(M>+ 0l 8,1

4.2)
where ¢,= 8~ 0/, é,= B,— 8, and O(} ¢4%)
and O(| _é,lz) are higher-order terms.

Substituting (4.2) into (3.4), we have
. 3/ (x,
2= A~ besDut bovt bl 4@,’(—? 0
+ m’(ﬁ—g“‘—'ﬁ'l) a 3

where v=(Rz, 0)~ AN+ (s, 6,)-elDu.
+0(l 245+ 00 ,1%)u, 44

If we use projection method so that @, and 8, are

bounded, then we have the following adaptive law(11].
b= - P T (,;"ﬂf ) 45)

,r a?(}l. _Q/)

if (| gA<Mpor(| Bi=Myand £"Ph. 8,75 57~ 20)

==y TP.b: 3}(}; .ﬁ)

i,
+n g’Pch—l—z,% o7 e 00 46)

if (1 84=M,;and ¢"P b, o, s 8) (a"ﬁf) <0)
_ T E(K. 4,)
R T e “n
o

(| B,1<MMor(l 8,1=M,and ¢"P b, ﬂ,TMu.zo)

T z(x, 8,)
PﬁcTﬁ“— u,

=—nrne
T > ro2(x 6,)
+re Pb 7 .G,Iz 8, 24, u, (4.8)
(] g=M, and ¢"Pb. 8, TM‘— 4. 0)

To investigate the usefulness of the above mentioned
adaptive law we consider the Lyapunov function candidate



V=1 TPet-L 47 g+ 4,7 4, 49
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Differentiating (4.9) with respect to time and using (35) and
{4.3) yields

V=~ £"Qe~g(x) £"P beu,+ &"P by

+'L & B+ n _g?p_b‘M]

d
+d 4T Pa BEI Ly )
Substituting (4.5)-(4.8) into (4.10), we have
V—— £7Qe—g(x) &P b.u,+ &"P b.v
T __,_éj_.__& r.97(z, 47
+5 e Ph Ty B 74,
r ”
+1, o"P 2l 8, 28 (s, ‘QL)u‘ (4.11)
a4,

[
where F; =0 in case of (45),(47) and ;=1 in case of
{46),(48). Now we show that the last two terms of (4.11)
are negative. Though (4.11) results in (4.12) directly in case
of Iy =19, the case of I} =1 becomes

o7 8=(8~ 870~ LU of*-| 41
+ 8~ 8/1120
8" 8= 8~ 87 8= 111 8,0~ 8,

+| 8- 4120
Therefure. the term with I, is nonpositive and we have
V-3 ¢"Qe—o(x) £"Phou+ ¢"Phw (412)

From (37) and g(x)>0, we have 2(x)¢”Pb.u,20;
therefore, (4.12) can be further simplified to

Vs~ Jg‘ £7Qe+ ¢"P b
s—J‘“'"{——llgl’—%tlgi'—z 2P b.v+1P bof?)
+%|szch
<-Aea=li oy Lip bt @1

where Aguis is the minimum eigenvalue of Q.

5. Converpence Analysis
This section presents that all the signals are bounded and

closed-loop systems are stable.
Theorem: The overall control scheme guarantees the

following properties:
W) | 0/1<M,, | BlsM, V B,2¢,

| 2(dI<] y.l+J 71% G
and, (Dl L (a4 y.‘-’tde ;ﬁ;% )
+ s (M)

+l(M +£~(I))(Ml+ly(-)'+l‘ﬂ“ ppongd

5.2
where  Apws is the minimum eigenvalue of P, and
Yo = [n yurey2 P17
PRy 2
@ [leoldr<a+s [ |ukoNde 63

where @ and b are constants.
(3) If vis square integrable, that is, f“ 1ADIPdE< 0, then

l‘iﬁl (=0 . 54)

We omit the proof of this theorem owing to the limitation
of space.

The structure of the overall system for feedback
linearization using NNs is shown in Fig.1.

6. Simulation

We use our two adaptive NN controllers to control an
inverted pendulum to track a sine-wave trajectory. Let
xn =60 ad x, = @ . The dynamic equations of the
inverted pendulum system[1] are

X.|=Xz
. miz oz, sing cosx;
: & sinx, m.+m " m.+m u
=
1 (4 moos's [ (4 - mesn
3 m .+ m 3 m.t+m
y=x

| identifier

Fig. 1. The structure of the overall system
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where m.=1kg, m=0.lkg, I=0.5m.

Design parameters are set to k=3, k=1, M,=100, M, .
016 b
= - =[4 -1 =[ 8 2] i
258, 4<01, Q [—1 2] and P=[5 ]. Sampling oo ]
005 h
time is 5ms . Supposing that IxﬂS% and |4<100, we gm 1
have f/(x)=1578, g£.(x)=146 and g{x)=1.12. We see that o008} E
the range of Ax) is much larger than that of g(x); o} 1
therefore, we choose 7;=140 and y;=1.2. But if 7 and o5 ] s M & »
Time
72 are chosen smaller, then actual output converges slower
towards desired output. Also, %, becomes greater than u,. Fig. 2. actual and desired states : X)(solid line), Y(dotted line)
The NN is a one hidden iayer with 10 hidden neurons plus
bias. Initial conditions of the NN are _{, (0)=0001 and
6,(0)=05, so that 2 (0)>0 and x(0)=(—6’(’7.0)f. The ot ]
030
desired trajectory is defined as y,(f)= -‘g%sin t. Actual 008 1
and desired outputs are shown in Fig.2, Actual output c}:"m- ]
converges very quickly towards desired output. Fig.3 shows sos} 1
the state x,(#) and its desired value y,(f= %cos ¢, amn
0.6 - -
and Fig4 shows the control input. ¢ Tene b ®

Almost perfect tracking is obtained in less than 1s .

Fig. 3. actual and desired states : Xp(soild line), Y n(dotted line)
7. Conclusion

We proposed in this paper a leaming algorithm for
multilayer feedforward NN used in indirect adaptive control. ‘ 1
This algorithm takes explicitly into account the approximation
error of the network and the error due to the Taylor’'s series
expansion. Simulation results show the effectiveness of the
approach. Further studies are in progress to cancel the
hypothesis that v is square integrable.

8. Reterences

{11 J. E. Slotine, W. Li, Nonlinear Applied Control, Englewood
Cliffs, NJ, Prentice Hall, 1991,

{21 Isidori A., Nonlinear Control Systems: An Introduction,
Springer-Verlag, Berlin, 1995,

[3]1 R. Marino, P. Tomei, Nonlinear Control Design: Geometric,
Adaptive and Robust, Prentice Hall, 1995,

{4] Hassan K. Khalil, Nonlinear Systems, Prentice Hall, 1996.

[5] L. X. Wang, *Stable Adaptive Fuzzy Control of Nonlinear
Syatems”, IEEE Trans. on Fuzzy Systems, vol. 1, no. 2, pp.
146-155, 1993.

[6] F. C. Chen, C. C. Liu, "Adaptive Control of Nonlinear
Continuous-Time Systems Using Neural Networks-general relative
degree and MIMO cases” Int. ]J. Control, vol. 58, no. 2, pp. 317-335,
1993,

7] A. Yesildirek, F. L. Lewis, "Feedback Linearization Using Neural
Networks”, Automatica, vol. 31, no. 11, pp. 1659-1664, 1995.

{8] E. T. Hancock, F. Fallside, “Stable Control of Nonlinear Systems
Using Neural Networks”, Int. J. of Robust and Nonlinear Control,
vol. 2, pp. 63-86, 1992,

[9] D. Lamy, "Stable Direct Adaptive Neurocontrol of Nonlinear
System”, IEEE conf. on systems, man and cybemetics, vancouver,
pp. 2176-2181, 1995.

[10] K. S. Narendra, A. M. Annaswamy, Stable Adaptive Systems,
Prentice Hall, 1989.

[11]1 P. A. loannou, J. Sun, Robust Adaptive Control, Prentice Hall,
1996.

Fig. 4. control input : %(solid line), %, (dotted line), %, (dashed line)



