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Abstract

In this paper center manifold theory is reviewed and its application to the control of bifurcations is explored.
When applying the theory to a sample power system, we study the stabilization of bifurcation points using
controls depending only on the rotor angular velocity of a generator. Under such a control it is shown that
the system is not locally stabilizable when control is applied through mechanical power, and the system is
locally stabilizable when the control is applied to the capacitor compensator.

1 Introduction

Recently a number of utilities in the world have
experienced voltage related problems. In some cases
blackouts occurred as a result of voltage collapse. In
response to the growing concermm an international
workshop on voltage stability and security was recently
convened under the sponsorship of EPRI and NSF [1].
The concensus was that today’s highly stressed and
heavily loaded power system networks are part of the
reason for these types of problems and concluded
further work is needed to fully understand this
phenomena.

It has been proved the coexistence of oscillatory type
instabilities and voltage collapse in a sample power
system model{23]. It is generally admitted that a
saddle node bifurcation of the nominal equilibrium and
an oscillatory transient from a subcritical Hopf
bifurcation lead to voltage collapse phenomenaf24).
Therefore the control of the bifurcation becomes
crucial. Colonius and Kliemann studied the
one-dimensional bifurcation control and Hopf bifurcation
control from the control set point of view under local
accessibility assumptions[56]. In [7] the cubic feedback
for the control of Hopf bifurcation and linear feedback
for the control of saddle node "bifurcation in a power
system was first proposed. In this paper, we
investigate the stabilization of the saddle node
bifurcation using center manifold theory, and apply this
to the analysis of a sample power system. Our
approach differs from the ref[4,7] in the following
ways. First we apply only output feedback. Secondly
we study stabilization when the control is applied to
either the mechanical power or the compensated
capacitor. It is shown in a specific system that the
linear feedback proposed in {4] does not control the
bifurcation modes, so a nonlinear feedback is required.

2 Bifurcation control using center manifold
theory

Consider the lift of the control
dimensional Euclidean space,

system on n

x=f(x,p, ) m

=0
with states reR" system parameters peR’ and
control #€ R'. Suppose (0,0,0)=0, D, f0,0,0)*
0 and 7 is C™ on neighborhood of the origin, and
dynamical system x=f{(x,,0) exhibits a bifurcation
at (x.p) = (0,0). Now the problem is to design a
feedback u(x)eC' with #(0)=0 to stabilize the
bifurcation point. Here we will apply center manifold
theory to this stabilization problem. We start with a
review of the linear theory.

Linearization of the system (1) gives

x = Ax+ Ap+Bu+F(x,p, %)
p=20
where A= D.0,0,0), A =D,£0,0,0),

B=D,£0,0,0), and 7(0,0,0)=0, Dj(0,0,0)=0. If
the eigenvalues of A not on the left half plane are
controllable by linear feedback #= Fx, then the
system is stabilizable using linear system theory. If the
eigenvalues in the right half plane are not controllable
by linear feedback, then the system definitely cannot be
stabilized by any feedback control under the conditions
above. The remaining case, in which some
uncontrollable eigenvalues are placed on the imaginary
axis, becomes interesting because nonlinear theory
comes into effect. We will assume this in the sequel.
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Let u = Fx+a(x), where a(0) =0 and Da(0) =0
so that A+BF has all the controllable eigenvalues- in
left half plane. Then there is linear transformation

¥ = T¥x under which (1) can be written as :
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where the u denotes the dependence on feedback
functions chosen, A, has eigenvalues in the left half

plane, Ay has eigenvalues on the imaginary axis, and

£1(0,0,0) = 0, Dff(0,0,0) = 0.for i =1,2,

The following theorem insures the existence of a
center manifold and has the reduction principle as a
consequence [8].

Theorem 2.1 There exists a center manifold for (2),
N = h(32.0), (32,0) < 8, where h is C° and the
flow on the center manifold is governed by the system
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Furthermore if the equilibrium point (0,0) of (3) is.

stable (asymptotically stable) (unstable), then the
equilibrium point (0,0,0) of (2) is stable (asymptotically
stable) (unstable). Denote
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We have a center manifold y, = A(z) and rewrite (3)
as

z= Bz+g(h(2),2) 4
To find k(z), one needs to solve the system of partial
differential equations :

Dh(2Y[Bz+g(h(2),2)] —Aph(2)—fi(h(2),2) =0.

However, solving these equations could be harder than
solving our original problem. Carr{8] showed the
following  useful approximation theorem, hence
simplified the computation.

For a function ¢: R°T*—R* which 1% Ci in a
neighborhood of origin, define

(M¢)(2) = DHz)[Bz+g(¢(2),2)]—An¢(2)
-£(¢(2),2).
Then (Mh)z) = 0, and furthermore(page 25 in [8)).

Theorem 22 Let ¢ be a C' mapping of a
neighborhood of origin in RY* into R* with
$(0) =0 and D¢0) =0. Suppose that as

z2— 0, (M)2)| = O(lz°) for some g>2. Then
as z— 0, |h(2)—H2)| = 0(z1°).

This theorem provides a way to approximate the center
manifold to any arbitrary order of accuracy. For
examples to approximate center manifold, see Chapter 5
of [8). Since any power system consists of highly
nonlinear dynamics and large of equations, applying the
above approximation theorem directly will result in a
heavy computational load. Therefore we need the
following consequence before we analyze a sample
power system. ;

Corollary 2.3 Given any integer p > 2, let 7,‘ and
2 be the approximate functions o ff and g
respectively  so  that | fix)— fi(x)l= O(Ix|"),
12(x) — g(x)l = XIxl*). Define

(M*¢)(2) = DKz)[Bz+g($(2),2)]1— Ay, (2
- F(¢(2),2).

If (0)=0, DKO)=0 and |(M*$)(2)l= (id’), then
Ih(2) — (2)] = O(l 2I*)

Note that if ¢(z) is such an approximation of k(z),
then the dynamics restricted to the center manifold can

be approximated by z= Bz+ g(#(2), 2).
3 Voltage stabilization using output feedback

Consider a sample power system that consists of a
load which is supplied by two generators [2]. The load
is represented by an induction motor in parallel with a
constant PQ load. The load reactive power @, is
chosen as the bifurcation parameter. In the example
described in {2], assume ‘that control can be applied to
either the mechanical power P, or the capacitor C

such as P,=1.0+u, C=12 or P,=1.0, C=12+u

Without controls, a codimension one saddle node
bifurcation appears at Q,=11.4115, and the dynamics



restricted on the center manifold can be computed to

be z2=-—79.43592*+h.o.t, see also [2). Therefore
we need to apply control around this bifurcation point.
If we use state feedback, we have shown that the
linearized system is complete controllable for both
mechanical power control and capacitor control.
However, in practice not all the states can be tracked
and observed, hence only some output feedback can be

applied Here we use the output function
y=w=D-x where, D=1[0100] and
x=[8wd, V]1". When Ilinearizing the system

around the bifurcation point, we see that the zero
eigenvalue is not controllable by the linear output
feedback, for both excitation control and capacitor
control. Therefore we will apply a nonlinear output

control u = F(y) = F(D- x).

Case 1 : control applied through mechanical power, ie.
P,=1.0+u C=12

In this case, f(x,p,u) in (1) is linear in u. And the
bifurcation point is at Q,=11.4115,
8=0.3476, w=0, 6,=0.1380, and V=0.9250. Let
u=u;(Dx) + uy (Dx)* + u3(Dx)*+ -+, In order to make
the equilibrium of (3) asymptotically stable, the second
order term K,y: in the Taylor expansion of

F{h(y;,0),¥2,p) has to be zero. This means, after
some computations, 2= 9861,2581235. When applying
u=u;(Dx)+ -+, the linearized system around the
bifurcation point is x= Ax+h.o.t., where the

eigenvalues of A are 0, -1, -89.32871. Therefore the
linearized system is unstable. Hence we conclude that
the bifurcation point cannot be stabilized by excitation
control depending only on rotor angle velocity of the
generator.

Case 2 : control applied through the capacitor, i.e.
P,=10, C=12+u

In this case, f(x,p,%) in (1) is nonlinear in u. And
one of the codimension one saddle node bifurcation
points is at Q;=11.3226, 6=0.3532, 8,=0.1421,
and V= 0.9184. Again using output feedback, we
apply == u,(Dx) + u; (Dx)*+ -, Following the dame
procedure as in case 1, we have »;= 7570.821611.
The eigenvalues of the controlled linear system are 0,
-18, -448+1558i. Therefore we have to apply center

manifold theory and the approximation theorems above
on order to see of the system is stable. It tumns out

that we can apply a control with u; given above and
u#;=0, #3=0. Then the approximate center manifold

is computed as #(2) =—0,1592"+ -,
$(2) =—1.79152 + -+, $o(2) =0.45412°+ and
Wz} = ($,(2), $(2), $3(2)). the  approximate

dynamics restricted to the center mariifold is

2=—0.03642552°, Therefore we conclude that under
such a control, the bifurcation point is stabilized.

4 Discussions

In this paper, by employing center manifold theory,
we investigate the feedback stabilization of codimension
one saddle node bifurcation point which arises from a
sample power system. Applying the control depending
on rotor angluar velocity to the capacitor, we have
shown that the bifurcation point can be stabilized.
However, such a control would have two drawbacks.
First, the approximate dynamics restricted to the center
manifold is structurally unstable. Second, such a control
should be regarded as temporary and secondary
because we did not globally design a control which
moves bifurcation point to stable non-bifurcation
equilibrium. Therefore additional fault clearing of the
power system is needed as a primary tool.
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