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Hybrid Position/Force Control of 2 DOF
Flexible Manipulator

Sun Yong Park - Young Seog Lee - Bo Hyeok Seo
Department of Electrical Engineering Kyungpook National University

Abstract.-A Hybrid technique is introduced in this paper
for a manipulator with 2 DOF flexible links. The
manipulator dynamics plus the actuator dynamics is
controlled by taking force feedback for the end-effector of
the link 2 while controlling the position of link 1 to control
the position of the end-effector.

1. Introduction

In the last thirty years great attention has been paid to
the dynamics and control of flexible robot arms due to the
requirements of high-speed performance and low energy
consumption. Modeling and vibration control of flexible
systems have received a great deal of attention in recent
years[2]{3]{7]. This problem has arisen, in particular, in the
area of space and industrial robots with lightweighting and
flexible links. When large structures are constructed by
using space robot manipulators, it is necessary to control
not only the position and vibration of the manipulators but
also the contact force with an object. Hybrid control of
manipulators has been studied by many researchers
[2){4](5[7). The dynamic stability of the force-controlled
two-link flexible manipulator was analyzed in [6].

This paper proposes a method for the hybrid
position/force control of planar manipulator with two flexible
links. Since the tip of the flexible manipulator contact with
a given constraint surface, a constraint condition should be
satisfied.

II. Kinematics of Flexible Links

Fig. 1 depicts two links belonging to a kinematic chain.
Link i + 1 is connected to link { by the revoulte joint { + 1.
Attactched to each link is a coordinate frame C; which is
placed according to the rules developed by Denavit and
Hartenberg[1]. Let A:: be the homogeneous transformation
which maps the ({ + 1)th frame to the jth frame. Now
suppose that the links are not rigid, causing the joints to
move to new position P; and P}y,. This deformation can
cause both a translation and rotation of the coordinate
frame. Let E; and E,,, represent this transformation, that

is, Iy maps C; to C; and Ciy to Ciy, respectively. If
then E; (1=1,2) can be

represented by the differential transformation defined in (1)
and with Roll-Pitch-Yaw representaion {1} in sequence of
Yaw, Pitch, and Roll.

the flexing motion is small,

(o)
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Fig. 1. Link geometry
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Here the &'s represent the relative translation between
i C; and C; while the ¢'s establish the rotaion between

these two frames. Following the standard procedure for
expressing the transformation from the ith link to the base
frame and incorporating the additional transformations due
to deformation, we write

T, = AEAE, -+ A |E,AE, (2)
Standard dynamic analysis leads to the following expression
for the kinematic energy:

KE= + S u( 147 3)

where I is the generalized moment of inertia of link [

measured in the link coordinate frame.

The potential energy of the system is composed of two
parts. The first of these is the gravitational potential energy
(GPE) which depends upon the displacement of the center
of mass, measured with respect to the base frame, in a
direction opposite to the gravitaional force field:

GPE, = —m,g'T;d"
4
with respect to the local frame C; and g is the vector

)

Here is a vector locating the mass center of the link

representing the gravitational field.
The second component of the potential energy arises from



the starin energy due to the flexure of the link. The
deformation of link ¢ is defined by (1) and consists of three
translational €; and three rotational $s components. Let us
collect these components into the displacemér;t vector
e; = [ €3, €y, €5, ¢a. b2, $3) Then the strain

energy stored in link 7 is expressed by
SPE; = % &/ K/ e; ®)

where K, is the generalized spring constant for link 1.

Finally, the Lagrangian for the manipulator can be
constructed from (3)-(5):

L=z’tl‘ [ '%‘ T,I, T," ] +m;g'7"di—-%- e,»' K,eiﬁ)

Thee Euler-Lagrange equation relate the generalized firces
F; to the generalized coordinates 8, (joint angles) and e;

(deformations):

_ d 3L _ oL

F; = di 36 I 30, (7a)
_ d_ L _ oL

0= dt 9 e" ae,-,- (7b)

Substituing the Lagrangian (6) into (7a), we obtain a
differential equation describing the gross motion of the
manipulator:

F, == 2,:D” 9,' ’f.' %Dwe,ﬁ' .;D'”k 5,' 0‘ (8)
+ % b ey + %Dﬁ,,,_ exem + D,

0= %C"mjk é;k '+: ;Cuniﬁi + Ec-wﬂz e;ke'lo
+ %,;C,,,,,i,,,e,;, 9, + %C.,ﬂé} 0/ (9)
+ Con + 2ikmni €mi '
Jj

The end point position vector (X,Y )T of the
manipulator is given by
X=Lycos 1 —uysin@, + Lycos(6; +up+6, )
—uyesin(8) + w5+ 6, ),
Y= L;sin 8, +u,zcos 8, + Lysin (8, + u s+ 4,)
+ 35008 (0, + uip+ 6, )

(10)

The constraint condition has a form as follows:
#(6, 0, 108, g, u2e ) = 0 an
Let A be a Lagrange multiplier associated with the
costraint (11). The constraint force for the end point of the
manipulator, ie., the contact force between the end-effector
and the constraint surface, can be expressed in terms of the
Lagrange muitiplier A.
Assumption 1 u'“g is negligibly small compared to 4,
Now, we consider the relation between the constraint
normal for f, and the Lagrange multiplier A. Using
Assumption 1, the raaction force from the constraint surface
is given by

AT

where
K61, 0) = (L cost+Lycos(8+6).

L,sin 0[ +L2COS(01, 02))’ (13) .
«8,,8,) = g—o)}(Llcosﬂ,+chos(0|+0z).

L,sin 8, +L,sin(8, +8,)).

Since the unit normal vector of the constraint surface is
given as
= 1 6, 6,)
n = - (14)
\/b2(0.,02)+c2(0,,02)[ o6, 6y)

we see that

fr = /lv b 6,.0,) +cX 8,8, (15)

Since the axial compressive force §; is the orthogonal
projection of the reaction force f, on the unit vector

ir=[ coséf,,sinb,] 7, o 16
ia=[ cos(8,+dp+0,), sin(f,+dp+6)] 7

it can be represented as

Q= —fuiln, (i=1,2) an

Using (12), (17), and Assumption 2 give

A=- " - . a8
&8y, 8;)cos (8, +8,) + (8, 8,)sin(8,, 6,)

Because the axial compressive force @, can be measured
by using a force sensor that is mounted at the tip of the
second link, it is possible to obtain the value of the

Lagrange multiplier from (18). When the direction iy of the

link 2 is orthogonal to the normal direction = of the
constraint surface at the contact point, the axial
compressive force @, is zero (@, =0), from (17). Since
we cannot determine the value of the Lagrange multiplier
on the basis of (18), this configuration is singular,

let 8,4 and 8y be the desired angles of 8, and 6,,
respectively. The standard inverse kinematic technique is
used to derive the desired angles 84 and 8,, from the
dsired position. Let f,; be the desired contact force, and A,
be the desired Lagrange multiplier corresponding to the
desired fonce f,s. From (15) A, is represented as

(19)

A, = Sud
‘ V (814, 020 + (D14, 820)

III. Two-Link Planar Mechanism

. Let us consider the two-link planar system illustrated in
Fig. 1. We will futhermore assume that link 1 exhibits
deformations € and ¢y, ant that link 2 exhibits

deformations &» and ¢,. The homegeneous transformation
T, and T, are given below. Using S, = sind,
C, = cosb,,. Sy = sin(6, + 8, and
Cy; = cos(8, + 6,), we obtain

C =S5 Cén L1S,

T, = AE = *S¢|12 G Sniﬁlz Cnelza'l-lsl (20)
0 0 0 1
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T, = AEAE, 1)
Each of the links will be assumed to be a slender rod
having a moment of inertia I. It has been aaumed that all

deformatins except @2, €12, ¢», and &y zre zeros. The

matrix of spring constants K involves Young's modulus E
and the second moment of area I of the link section about
the bending axis:

The dynamic equations (8), and (9) contain product
coupling of the states. Using the Lagrange equation, we
obtain the following set of equations:

M@ + Ve, 9 + Ko + Glg = 1, 22
where ¢ € R" is the arm joint variable. The dynamics of
the armature-controlled dc motors that drive the links given
by the n decoupled equations:

Judu + Bay + Fuy + Rt = Ky 0, (23)
where  Jy, B, Fy, R represent the motor inertia,
damping, friction, gear reduction matrix respectively, and

K, is a constant expressed as K,/R,, in which K, is the
motor torque constant, and R, is armature resistance.
Sustituting (22) into (23}, we  obtain the
manipulator-plus-actuator dynamics as below.

(M() ¢+V (g, 9 a+F(D+G (=K (24)

Control Input
v = 8:l:d+kpl( Gid* ) +ka(615—8)). (25)
g = Oagthpl 01a— 6) +kp(020—82) +kLAg—A)

IV. Case Study

For a 2 DOF flexible manipulator shown in Fig. 1, the
manipulator dynamics plus actuator dynamics is given in
(24). The simulation results of the each joint angle are
shown below with the motor control input in (25). Let
01 = 0.5, and 8, = 1 for fixed positions of respective
link, then Fig. 2, and Fig. 3. show that a good transient
response with no initial position error for each link.

Fig. 2. Trajectory of 8,

Fig. 3. Trajectory of 8,

V. Conclusion

We have considered the problem of hybrid position/force
control of a 2 DOF flexible manipulator. We have derived
the force feedback dynamics of the constrained flexible
manipulator by introducing the Lagrange multiplier and the
manipulator dynamics using Roll-Pitch-Yaw representation
taking into account the deformations of the manipulator,
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