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Abstact

In this Paper, we propose the feedback method having
neural network to control the chaotic signals to periodic
signals. This controller has very simple structure, it is
immune to small parameter variations, the precise access
to system parameters is not required and it is possible to
follow ones of its inherent periodic orbits or the desired
orbits without error, The controller consist of linear
feedback gain and neural network. The learning of neural
network is achieved by error-backpropagation algorithm.
To prove and analyze the proposed method, we construct
a software tool using c-language.

1. Introduction

The chaotic behavior of dynamic systems has been
extensively studied in recent years and many approaches
have been followed.

The characteristics of chaotic behavior ‘are as follows.

1) It is happened that a small difference in the initial
conditions produce very great ones in the final
phenomina,

2) A chaotic spectrum is not composed solely of discrete
frequency, but has a continuous broad-band nature. This
noise-like spectrum is characteristic of chaotic systems.
3) The steady-state Poincare’ orbits of chaotic systems
do not lie on a simple geometrical objects as is the case
with periodic and quasi-periodic behaviors. It appears to
be layers within layers, much like fine pastry. This
structure is typical of chaotic systems-called "Fractal
structure”.

In this paper, we will study how to control the chaotic
trajectory of a continuous-time nonlinear systems to
converge to its ones or more periodic orbits such as limit
cycles,

Many research papers have proposed the method to
control and suppress chaos. ,there are representatively
parameter variation technique, shock absorber concept and
the entrainment method [1l. But this methods have
problems in that the goal behavior has to be chosen by
trial-and-error, there is no feedback and any solution of
original system can not be a goal of the control. And, in
"the more developed method there is the linear feedback
method proposed by Chen and Dong {3]. This method
has merits in that access to system parameters is not
required, it is immune to small parameter variations and
any solution of original system can be a goal of the
control. To- achieve our goal, however, the feedback
control gains of sufficiently large value are required.
Although we use the . large control gain, the control
purpose is not x(H==x.() but |[x(H—x.(H| €.

‘And it might be difficult to apply the large control gain
in real systems.

In this paper, it is our achievex=x, and y=1y,,
although we wused a relatively small value for the
feedback gain. For this purpose, we use neural network
and linear feedback controller.

A small feedback gain attracts chaotic signal to periodic
signal having lx.(8) —x(H|< e. Then, to follow the
desired periodic orbits without error can be achieved
afterwards by a leaming of neural network.

To prove the proposed method, we construct a software
tool and use a 4-order runge-kutta method for solving
the solution of differential equations.

2. The Analysis for chaotic dynamic systems

Duffing equation describes the hardening spring effect
observed in many mechanical problems. Since then, this
has become one of the most popular methods, like the
well-known Van-der pole equation, in the studies of
nonlinear oscillation, bifurcation and chaos [3][6].

In this paper control and analysis Duffing equation.

X+ pex+pcxtx=q- cos(wt)
where >0, £,<0 63}

This solution of trajectory of Duffing equation display
complex phenomena, including various periodic orbits and
some chaotic orbits, when certain parameters of the
equation are varied.

In figuare l,we have seen such changes when the
parameter ¢,the magnitude of the external periodic
forcing term, is varied within certain range.

(@ The phase and tme dagram of a
constructed graphic simulator

. © q=23
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Fig. 1 Typical periodic and chatic orbits of the
Duffing equation.(x axis: ¥, y axiss x)

1) Bifurcation diagram

The dynamics may also be viewed more globally over a
range of parameter values, thereby allowing simultaneous
comparison of periodic and chaotic behavior.

The bifurcation diagram provides a summary of the
essential dynamics and is therefore a useful method of
acquiring the overview. In dynamics 2 change in the
number of solution to a differential equations as a
parameter is viewed is called a bifurcation.

For the Duffing equation, bifurcation can be easily
detected by examing a graph of x ( at a fixed phase in
the drive cycle ) versus the drive amplitude ¢.

This diagram is allowed to come to a steady-state by
omitting the some drive cycles. Suppose first that the
Duffing equation is driven to a small value,
‘The phase trajectory is limit cycle that is symmetric
about the origin ( show Fig. 1.(b} ) : the corresponding
Poincare’ section shows a fixed point. The x or x
takes only a single value in the bifurcation diagram.

If the driving force ¢ is slightly increased, the diagram
has two different shapes or many different shapes. This
two and many valuedness means two limit cycles and
chaatic behavior., In this diagram, we can know that the
chaotic behavior is non-periodic but is bounded. This
means that is stable in sense of Lyapunov.
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Fig. 2 Bifurcation diagram Duffing equation with ¢

3. The control of chaotic systems

1) Linear feedback method

Chen and Dong have studied in the problem of
controlling trajectory of the Duffing equation to one of its
inherent orbits [3]. The block diagram of control system
is shown in Fig 4.

Fig. 4 Block diagram of the linear feedback controller
{ Chen-Dong approach )

Let (xu, v = (x(), yu{)) be one of its period-1
orbits that we are targeting,

‘The approximate steadily oscillating period-1 solution is
defined

xu() =c+a- coswt+ b sinwt %)

To determine unknown coefficients 4, b and ¢,  2(1)
of (1) is substitued for (2).

And the eguilibrium point (&, b,¢) of system, which
corresponds 1o steady oscilations, can be solved from a

little algebra.
For some T>0 we want to have
W)=z, {D=xu(), 27T <))

But, since it is impossible to perfectly follow a desired
periodic orbits, we modify the control purpose such that
for any given €>0 .
Xl ~ (D<€ and lx (O — HADI< e

for all ¢t>7T,v 4)

For this purpose, Chen and Dong consider the
conventional feedback controller of the form

[”] =K [*¥ %)= _[ku.ku] X" Xm
v A= %o by, kp i x— x,
where K is 2x2 matrix )
which yeild, after being added to the original system, the
following " controliled Duffing equation” :
x=f{x,9) .

y=g{x,%) ©)

To determine a suitable controller designed by K, the
jacobian matrix is considered :

of.  3fc
]c=]c(xu,y)= ax ' dy [
g, s
dx * 9y
(x;;.y:-)

Let us determine K so that the root of its characteristic
equation det [sI—J. 1=0 could be located in the open
left-half s-plane. Obviously, a sufficient condition is

pthythky> 0

by (p+ k) + (1= k) (b + 2+ 25 > 0 (8

With the choice ku = k;zz kuz 0, we have
by —py— 3k )

and the controlled Duffing equation becomes

z=y a0
y=—px—2°— py+ qeos wt— ky (x—1,)

in which x, is given by (), Furthermore, it is clear that
if we use a relatively very large value of ky, then this
controlled eguation reduces to

r=y

05 —ky(x—2x2

But, in many cases it might be difficult to apply the
control gain Ay of large value in real systems. For
some value of &y, the escillatory term gcoswi existing
originally in the Duffing equation may dominate the
designated feedback control input, so that the controlled
trajectory appears to be oscillating in some way.
Therfore, as above mentioned, the linear feedback
method have demerit in that

a8 ~ (DS & and 120 ~ x(Di< e

forall )7,

;not perfect model following.

2) The improved feedback control using

neural network
Since it might be difficuit to apply the high gain in real
systems, the linear feedback method defined the control
goal as follow @

— 408 -



() —e(DI< e and |x4() ~ ADI< e forall )T,

In this paper, although we used a relatively small value
as the feedback gain k;, our goal is to to achieve
x=2x, and y=y,.

The block diagram of control system is shown in Fig 5.
A small Ay attract chaotic signal to periodic signal
having |xu() —2(D|< e and the perfect model

following control without error can be achieved
afterwords by a learning of neural network.

The modified control inputs are defined
U= —ky(x—xx) + N(t;, x,20) an
where M - ) is the ouput neural network,

Therefore, the controlled Duffing equation has the form
x+px+ o+’ = geoswt+ u, (12)

Fig. 5 The block diagram of the proposed feedback
control using neural netwotk.

First, suppose that the desired periodic solution x,
satisfies Duffing equation :
Ko+ DX+ DXt 25 = Qcoswt a3

However, since there are some modelling and parameter
errors in real applications, the periodic solution x,
satisfies the following form '

Ko+ DXt DrXm + 2% = g coSwi 14

,50 that subtracting it from the controlled Duffing
equation with neural network gives
e+ pe+ (b + byle+ &

. (15
= —3xxpe+ h(t; 20, %) + N(tix,x,.) )

where, e=x—x, and Kh(-) is a undesirable term
resulting from the modelling and parameter error, and
bounded in small region.

Neural network is learned toward e—{ after some time,
‘that is’, be approximated to the form :

N(txxn) =& +3xxne— b5 %, Xu) 16)
Therefore,
et pe+ (b +kyles0 )

Since back-propagation neural networks have
local-minima, it is impossible for controlled Duffing
equation to perfectly follow a desired periodic orbit.
Obviously, however, it has a small errors.

In this paper, neural network _is learned by
back-propagation algorithm, and the proposed method,
since neural network can leamm  all-nonlinear
characteristics, have the good robustness [91[10].

’[I‘l])Ee ;Neight adjustment of neural network is computed
9][10
Awin+1)= 108} lout*+ a 2wi{n)

win+1)=win) + Jwin+1) (18)

where wﬁ( n) = the value of a weight from neuron to
q neuron at step n (before adjustment ) and k indicate
its destination layer

outf = the value of output for neuron i

a, 7 =the momentum and training-rate coefficient

5} term of(18) have the following
output layer :
8t = (torget; — out*™')- f(net)
hidden layer
F = f(netH): Zaf“ - w' a9

where f( +), called a activation functim-l, use
Y(1+e ™ —0.5 8]

A complete proof of the proposed method is already given
in Chen and Dong, neural network only eliminate a small
oscillating term after some time with learning.

4. Results

To prove and simlulate the proposed method, we
construct a software tool using C-language, and the
solution of differential equations are solved by 4-order
runge-kutta method.
The controlled Duffing equation is given by
T+prt+pxta’ ©20)
= gcos wi+ kyje+ NEx, %, X, X)

Where p=0.7, p,=—1.3,¢=2.3, w=1.8(rad/ sec)

We use a conventional backpropagation network with

input, hidden 1, hidden 2 and output layer. Each layers
have 4, 4, 4 and 1 neurons, and input neurons consist of

Xy Xy X ANA Ko The momentum and learning

coefficient is 7 =0.9 and a =0.8,  and the initial

values of all weights are randomly chosen between -05
and +05.

Fig 6. show the result of the linear feedback method
proposed Chen and Dong. From figure, we can know that
, although a chaotic signal of Duffing equation is
controlled to periodic orbit, the controlied signal differs
from the desired orbit.
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Fig.6 The result of the linear feedback method
( Chen-Dong approach )

" Fig 7. show the result of the proposed method after 100th

periodic learning. we can know that almost perfectly
follow the desired multi-period trajectory as well as the
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desired period 1 trajectory, in spite of small ky . For
simulation, the desired model equation use the following
form

Kot PXut D%+ X = qeosWH
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Fig. 7 The result of the proposed method after
100th periodic learning

Fig 8. show that the proposed method Have the robustness.
To illustrate the robustness, the parameter of Duffing

equation satisfying x.{# differ somewhat from the actual
controlled Duffing equation. That is, suppose that P, §;
differ from p, p, .

Kt Dt Priim+ x5 = qeos wl 1)
where ==0.75, =~ 1.4, w=1.8(rad/sec)
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Fig. 8 The Robustness of the proposed method

Although the desired periodic trajectory are not the ones

of inherent orbits in actual chaotic systems, it has no
problem, This means that the precise access of the
chaotlc systems is not required and it is possible to apply
in real systems having interactions of many system
vanables

5. Conclusion

In this study, we analyzed the chaotic systems and
proved the effectiveness of the feedback method having
neural networtk.

The proposed method perfectly controlled the chaotic
systemns to limit cycles in spite of a small feedback gain,
In this method, Access to system parameter is not
require , any particular solution of the autonomous
system can be the goal of the control and robustness is
gauranteed.
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