Genetic analysis of salinity tolerance in japonica rice

Kyu-Seong Lee¹, D. Senadhira² and Hyun-Tak Shin¹

1. Objective

To determine the order of dominance and the genetic components of variation for salinity tolerance

2. Materials and Methods

The materials consisted of a complete diallel(including reciprocals) of nine japonicas, F₁ seeds were grown in a salinized solution for 12 days and treated initially at an EC of 6 dSm⁻¹ for four days followed by an EC of 12 dSm⁻¹for 20days. Samples were analyzed for Na⁺ concentration in the shoot. The diallel analysis procedure of Hayman(1954) was used.

3. Results

- Covariance-variance analysis satisfied simple additive-dominance model and detected partial dominance of the trait.
- Genetic components analysis revealed significant additive, dominanace, and environ -mental effects and confirmed incomplete dominance of the trait
- Number of gene groups governing Na uptake was found to be 4.
- Narrow-sense heritability was estimated at 0.49.

¹ National Honam Agricultural Experiment Station(NAAES)

² International Rice Research Institute(IRRI), Philippines

Table Origin, plant type, height, and tolerance parameters of vericties selected for 9x9 diallel cross.

					TOLERANCE PARAMETER				
VARIETY DESIGNATION CODE		ORIGIN	PLANT TYPE!	SEEDLING HEIGHT (CM)	VISUAL SCORE (1-9)	SHOOT Na ⁺ (%)	SHOOT K+(%)	SHOOT Na-K RATIO	OVERALL GROUPING
Agami M1	Pl ·	Egypt	TR	52±4.9	3.9 <u>+</u> 0.42	1.48 <u>±</u> 0.14	1.67±0.06	0.89±0.11	τ
Geori	P2	Kores :	TR	43±1.5	4.2 <u>+</u> 0.57	1.69 <u>±</u> 0/08	1.56 <u>±</u> 0.13	1. 09±0 .14	7
Namyang 7	P3 .	Korea	IM	38 <u>±</u> 3.1	3.8±0.57	1.39 <u>±</u> 0.09	1.87 <u>±</u> 0.19	0.75±0.11	T
Yunleo 11	P4	China	IM	45 <u>±</u> 5.5	5.4±0.52	1.89±0.10	1.44±0.04	1.31±0.08	MT
Yunlen 12	P5	China	IM	\$4 <u>+</u> 4.0	6.4 <u>±</u> 0.48	1.88±0.06	1.64±0.10	1.15±0.10	MT
Akihikari .	P6	Japan	IM	45±5.0	6.0 <u>±</u> 1.14	1.81 <u>±</u> 0.19	1.50±0.20	1.24 <u>±</u> 0.3	MT
Yeosudo	P7	Korea	TR	52 <u>±</u> 1.9	8.0±0.67	2.26 <u>±</u> 0.21	1.61 <u>±</u> 0.11	1.41±0.20	8
Dacgudo	P8	Korea	TR	52 <u>±</u> 4.0	7.3 <u>+</u> 0.67	2.32 <u>±</u> 0.14	1.32 <u>±</u> 0.05	1.77±0.16	s
Jinting 78-2	P9	China	IM	52±5.0	8.6±0.52	2.76±0.29	1.79 <u>+</u> 0.15	1.55±0.16	s

¹⁾TR = Traditional, IM = Improved, 2)T = Tolerant, MT = Moderately tolerant, S = Susceptible

Table Estimates of genetic parameters for shoot Na⁺ concentration in a 9x9 diallel cross.

GEN	ETIC PARAMETER	ESTIMATE±S.E
(D) A	dditive effect	0.07176±0.0432*
(H) C	Oominance effect	
	Hį	0.03853±0.00953
	Н2	. 0.02487±0.00819
	h ²	· 0.08150±0.00549
(F)	Gene distribution	0.06054±0.01007
(E)	Environmental effects	0.00664±0.00137

Proportional Values					
(H ₁ /D) ^{1/2}	Mean degree of dominance	0.73276			
(H ₂ /4H ₁)	Proportion of genes with + or - effects on parent	0.16136			
(KD/KR) ^t	Proportion of dominance and recessive genes in the parent	3.71281			
r	Correlation between (Wr+Vr) and Yr	0.89411			
r ²	Prediction for measurement of completely dominant and recessive parents	0.79943			
(h ² /H ₂)	No. of gene groups that control tolerance and exhibit dominance	3.27677			
(h _{ns})	Heritability (narrow-sense)	0.49178			
(h _{bs})	Heritability (broad-sense)	0.74460			

^{* =} Significant at P<0.05 1KD/KR = [(4DH₁)^{1/2}+1/2F)/[(4DH₁)^{1/2}-1/2F]

Fig. Covariance and variance (Wr-Vr) regression graph of the SIGS dialect chalysis for shoot Na* concentration.