‘97 chErmDIEts] &7 50Fd stAIEeli =23 (EMO 4)

ORX| £H Davidson Method 2 HEs

dEE. Yu Zhu
2208t HoAEZ8

A Parallel Algorithm of Davidson Method for Eigenproblems

Hyoung Joong Kim, and Yu Zhu
Dept. of Control and Instrumentation Engineering. Kangwon National University

Abstract - The analysis of eigenvalue and
eigenvector is a crucial procedure for many
electromagnetic computation problems.
However. eigenpair computation is
timing-consuming task. Thus. its parallelization
is required for designing large-scale and
precision three-dimensional electromagnstic
machines. In this paper. the Davidson method
is parallelized on a cluster of workstations.
Performance of the parallelization scheme is
reported. This scheme is applied to a ridged
waveguide design problem.

1. Introduction

1.1 Waveguide Design Problem: Many
applications require the solution of the
eigenvalue problem

Ax =2x, (D

where x is an eigenvalue of the matrix A,
and x is its corresponding eigenvector. In
electromagnetics, we can find many
eigenpair computation problems resulting
from the dispersion analysis of waveguides
or resonance analysis of cavities (4, 12].
One of our target applications is the ridged
waveguide design. Ridged waveguides have
many applications in microwave and
antenna systems because of their unique
characteristics of low cut-off frequency,
wide bandwidth and low impedance
compatible with coaxial cables (12}. The
original ridged waveguide design problem
produces a generalized eigenvalue problem
of the form

Bx =AC x. (2)

However, (2) can be transformed into (1).
The original matrix B is sparse, but A
becomes dense. In addition, A is real and
symmetric in this paper.

1.2 Eigensystem Solver: There are
several iterative methods dealing with the
eigenpair computation problems: the
Jacobi’s diagonalization method {6, 7}, the
power method (7], the method of Lanczos
(6. 8). the Arnoldi’s method (9. 10). and
the Davidson method (11, 10, 1, 2]. The
latter method has been reported to be
quite successful (1, 2). Davidson method
can be regarded as a preconditioned
version of the Lanczos method. It seems to
be a promising method for -eigenvalue
problem in many applications including
electromagnetic fields computation. The
Davidson’s algorithm that computes the
largest or the smallest eigenvalue of the
matrix A can be prescribed as follows (1,
2]):

1.3 Hardware Configuration: In our
experiment, three HP workstations, the
C160s, connected by 10Mbps standard
Ethernet, are employed to parallelize the
Davidson method. However, our
parallelization scheme can be applied to
any bus-based multidrop configuration.

1.4 PVM: The. program is developed
upon PVM, Parallel Virtual Machine [5].
The PVM is a software that permits a
network of heterogeneous Unix computers
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to be wused as a single large parallel
computer. The PVM is freely available,
well designed, and not restricted to any
specified type of machine so it is now
widely used and becomes almost a standard
for message-passing system developing tool
like MPI (Message Passing Interface).

1.5 Parallelization Strategy: Two
typical programming models in distributed
memory system are SPMD (Single Program,
Muitiple Data) and Master/Slave (5). Even
though the method is an
eigensystem solver, it computes eigenpairs
indirectly from a very small kXk
matrixrather than directly from the
large-scale matrix A. The size of the
matrix increases as the iteration number k
increases. Thus, performance of the
Davidson method may depend on the
number of iterations. In general, the
eigensolver itself is difficult to parallelize.
In addition, the matrixis not worth to be
parallelized as long as k is small. Thus, it
is better to employ the Master/Slave model
in which the master solves this small
eigenvalue problem while the salves take
over the tasks of computing the most time
consuming step: the matrix-vector
multiplication and orthogonalization {2].
Our main idea is that every slave holds a
part of the matrix A  to execute the
matrix-vector multiplication and the
orthogonalization in parallel which are the
bottleneck of the Davidson’s algorithm. The
details of our algorithm is omitted due to
the length of the text.

Davidson

2. Experimental Results

In our experiments, we first apply our
algorithm to a real world eigenvalue
problem derived from a ridged waveguides
design (we denote it stif below ) (12].

In addition, in order to observe the
advantages and constraints of our
parallelization scheme, we also select the
artificial sparse test matrix set as in (1)

given below:

_ [ if i=j normally distribued : N0, 5%) (3)
aj 0y { with probability a : N0, 1),
VI with probability (1—a) : 0.

Computation stops when

boae— pam 1 C107H,
where g, is the convergent eigenvalue at t
he kth iteration. The parameter is approxi
mately the density of the matrix which me
ans the ratio e=(number of non-zero eleme
nts)/(nxn).

Table I:Description of the Testing

Matrices

i # Maximum
Name Rl\eisfiotllllr):e Dimesion Itera(:iron Density Eigenvalue
stif | See(12) 677 39 1.0000{7.6411e+7
testl | Eq.(3) 8000 27 0.0002 | 19.64068
test2 | Eq.(3) 8000 66 0.0010] 23.15136
test3 | Eq.(3) 8000 77 0.0200 | 28.64236
testd | Eq.(3) 12000 31 0.0002| 19.82698
tests | Eq.(3) 20000 23 0.0002] 23.91715

Table II: Timing Data of the Testing
Matrices Above

"

# of
Workst | stif testl | test2 | test3 | testd | testd
ations
1 18.689141.394|117.571227.41|26.330|40.997
2 9.4964126.850161.400(114.92]114.92|14.754
3 6.4958120.718168.339|106.03{106.03|13.763

Table lll: Speed-up Performance of Our
Parallelization Scheme

# of
Workst | stif testl | test2 | test3 | test4 | testd
ations

1 1.0000 (1.0000 |1.0000 {1.0000 {1.0000 [1.0000
2 1.9680 (1.5416 {1.9145 {1.9788 {1.7843 [1.7513
3 2.8771 |1.9980 [1.7205 {2.1447 |1.9128 |1.2903

0 10 20 30 40
Number of iterations
Figure 1. The convergence profile of

matrix stif
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3. Conclusion

From all the above of the
experiments we can see our algorithm is
successful on the real-world matrix, stif.
Its convergence profile is shown in Figure
1. The convergence speed is very fast,
supporting the claim that Davidson method
provides a second order convergence near
the solution (2). This is one important
reason that we
Davidson method.

When A is sparse, the speed-up is more
than 1.5 with two computers. However, the
speed-up may not be satisfactory for some
sparse problems when three computers are
engaged. From the speed-up results of
testl, testZ and test3 in Table Il we find
that the speed-up increases radically as
the number of non-zero elements increases.
Results of testl and test4 show that when
the dimension of the problem increases,
speed-up increases obviously. However,
test5 shows that speed-up with three
computers can be lower than with two
machkines. So it is recommended that when
using - our algorithm in the computing
environment described above with more

results

recommend using the

than three computers may not produce
satisfactory result especially with sparse
matrices. However, dense matrices produce
attractive speed-up. Obviously, the
boundary element methods produce dense
matrices.
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