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Abstract
modulations is investigated.
brake.

An open loop vibrational control of underactuated mechanical systems with amplitude and frequency
The underactuated systems considered in the paper are assumed to have free joints with no
The active joints are positioned first by a linearizing control, and then periodic oscillatory inputs are applied to
them to move the remaining free joints to their desired states.
underactuated systems with oscillatory vibrations is developed.
terms of determining amplitudes and frequencies for general system is still under investigation.

A systematic way of obtaining averaged systems for the
A complete solution to the open loop control strategy in
However, a specific

control design for 2R manipulator which is obtained the averaging system is demonstrated.

Keywords

1. INTRODUCTION

An underactuated mechanical system refers to the system
with less number of actuators than the degrees of freedom
that the system possesses. Therefore, a manipulator with
free joints becomes naturally an underactuated system.
Recently, control of underactuated systems draws great
attention in view of reducing the number of actuators and/or
sensors, and improving the reliability by a fault-tolerant
design of fully-actuated manipulators working in hazardous
areas or with dangerous materials. It is particularly
important to control the failed joints in the event of the
actuator failure in the case of space robots. Referring that
an active joint is the one which is fully controlled via an
actuator, and that a passive joint is the one which has no
actuation but equipped with a brake, and that a free joint is
the one even without a brake, the underactuated systems are
defined as those with passive and/or free joints.

Vibrational control is a control technique which utilizes
high frequency zero mean vibrations to modify the behavior
of dynamical systems in a desired manner. The theory for
nonlinear systems had been matured in the middle of 1980's
by [1], [2). The theory has also been extended to the
parabolic partial differential equations [3], [6] and functional
differential equations [4].

The underactuated system with passive joints has been
investigated by several researchers.  Recently, interesting
papers which applied periodic oscillations to control
manipulators with free joints have appeared {7], [8]. Note
that the active joint variables appearing in the joints
dynamics can be considered as varying system parameters.
Therefore, the periodic movement of active joints provides a
parametric vibrational control to the free joints dynamics.
Suzuki et al. [7], [8] investigated an oscillatory control
based on Poincare map analysis. De Luca et al. [5] also
investigated a constructive open loop control which involves

151

Averaging, Feedback Linearization, Open Loop Control, Underactuated Manipulator, Vibrational Control

nilpotent approximation and iterative steps.

In this paper a prescribed end point steering problem for
underactuated systems with free joints via partial feedback
linearization and vibrational control is investigated.  The
control design consists of two stages. The first stage
linearizes the system partially, and applies a feedback
control to drive the active joints to their desired locations.
At the end of first stage the positions of free joints will be
arbitrary.  Then periodic inputs to the active joints are
applied to move the remaining free joints to their desired

positions. Proper magnitudes and frequencies for the
oscillatory inputs are determined through the averaging
analysis.

The contributions of the paper are the following:
Averaging analysis is extended to the system with the
derivative of input, and a systematic way of obtaining
averaged systems for underactuated systems is developed.
The plant considered in the paper allows a drift term and
assumes the free joints with no brake. The utilization of
both magnitude and frequency of the vibrational inputs is
proposed.

2. CONTROL PROBLEM

Consider an » degrees of freedom open loop mechanism
with joint variables 4. ..., g.. It is assumed that each joint
has a single degree of freedom and only m< » joints are
active. The joints which are capable of actuation are called
an active joints. And the remaining /=#n-m joints with
no actuation and no brake are called free joints. It is
assumed that both joint variables, either active or free, can
be measured.

Using the Lagrange method, one can derive the equations
of motion of the system. We can rearrange the equations
so that the coordinates for active joints are grouped in

gy R™ and the coordinates for passive/free joints are



grouped in g, R'. Hence the final form of equations of
motion for an underactuated mechanical system is
represented as
Mg +Mpa+ Cilg, )+ Glg)=f N
Mg+ Mpar+ Coq, ¢)+Golg) =0 )

where the vector functions Cy(q,¢)e R™ and C,(q, ¢)<s R'
contain Coriolis and centripetal terms, the vector functions
G(g)e R™ and Gyg)e R' contain gravitational terms,
fe R™ represents the input generalized force produced by
the m actuators at the active joints. Hence like a fully
actuated robot, the dynamic equation for an underactuated
system can also be written as
M(q) ¢ +Clq.q)+Glg)= Bf 3)
where
a=laf.a71". M(q)=[ﬁ;; %Z] B=[

c=1cr, ¢, 6=IGl. G617

Imxm]
0 xm ’

Note that M is a symmetric positive definite matrix. For
notational simplicity we will henceforth not write the
explicit dependence on ¢ in M,C and G. It is
emphasized again that the dynamics of underactuated
systems is represented as standard dynamics of # link
robots except that there is no control input to the /
equations.

2.1 Partial Feedback Linearization

Now consider equation (2). The term M, is an

invertible /x/ matrix as a consequence of the uniform
positive definiteness of the inertia matrix M in (3).
Therefore we may solve for g4, as

Gr=—Mz'(My g, + Cs+ Gy) 4)
Substituting (4) into (1) yields

My +Ci+ G =/ ®)

where M =M, —MuMx'My , C\=C—MuMz'C,,
?1= Gl_—MIZMZZlGZ .
A partial feedback linearizing controller can therefore be

defined for equation (5) according to

f=Myu+Ci+ G (6)
where xe R™ is an additional control input yet to be
defined. Note that the mxm matrix M, is Iitself

symmetric and positive definite. The complete system up
to this point may be written as

(7)
)

in equation

a=u

Mugr+ Co+ Go=— My u
Since the input-output relation from « to g
(7) is linear, the active part of equation (1) has been
completely linearized. However considering the full state
vector ¢, only partial linearization has been obtained.

2.2 Averaging Analysis

The method of averaging is an asymptotic method which
permits the analysis of dynamic behavior of a time-varying
system via a time-invariant (averaged) system, which is
obtained by averaging of the right hand side of the original
time-varying system. In this paper once all the active
joints reach their desired set points periodic, oscillatory
inputs are applied to the active joints in view of moving
the remaining free joints to their target positions. Since
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the input is periodic, each active joint returns back to its
original position in each period. The design issue now
becomes how to move the free joints to their set positions.
Since the system is time varying the determination of input

magnitudes and frequencies are calculable through the
trajectory analysis of averaged system.
Consider the nonlinear system
x=X(x,4,1) C)]

where X: R"XR™xR"—>R", xe R" is the state; i< R™ are

the system parameters in which vibrations are to be
introduced; and A= di/dt.
Introduce an oscillatory input into (9) as follows
A) = A+ Ht), Ht)= aRwd (10)
where 1, and o are constants, and s is a periodic
vector function with the average value equal to zero. Then
(9) becomes
x=X(x, Ao+ (8, X (11)
It is assumed that (10) can be decomposed as
x=Xo(x, {t)) + X (x, o(1)) (12)

where X,(x, {0)=Xy(x, Ao+ 1), and v(t)=dR¢)/dt.

(12) is now transformed into the standard form of
x=eflx,t), so that the time averaging of the right hand
side can be executed. To make this transformation
rigorously consider the following generating equation which
is motivated from the second term in equation (12).

x= X {x, (1) (13)
Let &(tc): RxR"—R" be the general solution of (13)
which is a T-periodic for some u(-) and ¢>¢. Note that
ce R" can be uniquely defined once initial conditions
x(t,) € 2C R* are provided.
Introduce a new variable ¢(f) as in the following
transformation (the Lyapunov substitution)
() =h(t,q(1)). (14)
Then
a(h=[LLeba® | (har, o), aftwt) (1)
is obtained. In slow time scale such that r=g¢¢ with

z2(r)=q(t) and

obtained.
Hr)= e[ﬂ(—fb—jiﬂl] VU Xo(h(e, 2(2), afl D)) .

Finally, an averaged system is defined as
y=e7Y(y)

e=1/w, the following standard form is
(16)

(17
where

—_ T 1
Y= ljm [[2EER] X (k(r,y). afD)ar
By the theory of averaging it is known that there exists

& >0 such that for all (< e<eg, the hyperbolic stability
properties of (16) and (17) are the same.

3. APPLICATIONS

In this section, one example of underactuated mechanical
systems with free joint, a two-link manipulator is shown.
Its averaged systems via partial feedback linearization is
also demonstrated. It is noted that any linear contro! theory
for the 2R manipulator is not applicable since its linearized
system is not controllable.

3.1 A Planar 2R Manipulator



Active Joint

T
o
Free Joint
Fig. 1 A planar 2R manipulator

Fig. 1 shows a planar 2R manipulator on the horizontal
plane [5], [8]. Using the Lagrange equation, the following
equations of motion are obtained.

My(8:) 8, + Mp(8,) B+ C1(6,, 81, 0=t
Mio(02) 8+ My(62) 65+ Co(6,, 61, 8) =0
where
My(8) = myst+ my 2+ mysh + 2masylicos 6o+ 1y + 1y
Mp(8,) = mysh+ mysylicos O, + I, Myp= mysi+ Iy
Ci(6y, By, 6))=— mys;hisin 62(26, 8, + 63)
Co(8,. 8, 8;) =2mys,1, 6 sin 6,
Note that the gravity term does not appear in the equations,
and check that the linearized system is not controllable.

Following the procedure in Section II, the following
partially linearized system is obtained as

(18a)
(18b)
Now assume

b=u
92=—(1+ncosl92)9,—-n(91)2 sin 8;
where  n=mylsy/ (mysi+1L,) is a constant.
that the active joint &, has been positioned at a desired
location with an appropriate control algorithm. For instance,
wu= Btk Sra— 8,)+ k(15— 6))
Now restricting our control task to the
3, and 4 become varying parameters in

Let x,=86,, Then the state

would suffice.
second equation,
the 6,
equation

dynamics. %= 0,.
X =1

x=—(1+n cosx;)#, — n sinx( b)*
We apply oscillatory periodic

is obtained. inputs as

30 g
TIME S
(1) 254 -~

8 (RAD)

Fig. 2 Trajectories of Original System (19)
( a=0.5,1LC: (8, 6=(0.50)

01=—%coswt. Then
x| — x2 +w 0
[x'z] [ — nsinx (@ sinwt)z] u[ —a coswt (1+ncosx) (19
is obtained. Note that equation (19) is in the form of

equation (12). Therefore the generating equation of (13)
takes the form

%) _ 0
[ x;]—[ -acost(1+ncosx1)] 20)

The general solution of (20) is

_[ Aty c
M. ) [ h;(l. L‘)] [ cz—a(1+nx<:osc1) sing]’

Therefore (15) becomes

q;—a(l+ncosq, ) sinwt

i‘l = él(t) =[ (')l)
at g:(9 nasing, sin wt (— g, + naecos g, sin wt) -
In slow time r=wt with g(H=2(0, and e=1/w. (21)
becomes
z(D=¢elz,—a(l+ncosz,) sinr] (22)

2,(0) = e nasinz; sinr{ — z; + nacos z,sin 7)
Finally, by time-averaging the right hand side of (22) the
following averaged system is obtained.

=€y (23)

2.2
" na
=&
Y2 4

sin2y,

3.2 Control Design for 2R Manipulator

Fig. 2 shows a vibrationally controlled motion of the
second joint in the three dimensional space. Fig. 3 shows
the trajectories of transformed system (22) starting at
various initial conditions. As it can be compared from Fig.

a aQ @

Fig. 3 Fig. 4
Fig. 3 Trajectories of Transformed System (21) (e=0.5. o =4x)
Fig. 4 Phase Portraits of Averaged System (23) (¢=10.5 . @ =47)

Fig. 5 Phase Portraits of the Averaged System with Different @'s (w=4mr, 1C: 6,(0)=0.5, 8,(0)=0)
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X : Initial State

-0 40
O : Desired  State

0.5 1 18 2 25 3
N

Fig. 6

Fig. 7

Fig. 6 Trajectory of the Original System with different w's. (2= 0.5)

Fig. 7 Control Strategy

Fig. 8 Simulations (0.5,0)—(1.0,0) (,=0.5, a2=1, a;=0.5)

3 and Fig. 4, the behavior of transformed system (22) is
well described by that of averaged system (23). Fig. 5
compares the trajectories of the averaged system with
different input amplitudes «o's. Fig. 6 shows the trajectories

of the transformed system with two different input
frequencies. With the same amplitude finer oscillations are
observed in the case of high input frequency.  Now

consider a positioning problem in which the desired angle is
larger than the intial angle as in Fig. 7. For instance, let
the initial state be (0.5, 0), and the desired state be (1.0,
0). The following control strategies are summarized.

In the first departing quarter an arbitrary vibration with
frequency «» and amplitude o, can be applied. When 4,
reaches #/2, the input amplitude in the second quarter is
switched from o, t0 a., in order to reduce control time.

If 4,
that the averaged trajectory crosses the horizontal axis, the
amplitude is switched again to o; which is supposed to be

begins to decrease, which corresponds to the point

smaller than «,. Finally, when ¢, becomes /2, we now

enter the last cruising quarter to the target position. The
amplitude o, in the last quarter can be easily calculated
from equation (23) as

2.2

2.2
na a 2 2
€OS “Vig+ Yo

cos zyl+y22 =
y.s) are desired state. Note that the amplitude

in the last quarter should be calculated in every step as
follows.

where (y4 .

G=V , 2(23'22—5*2,21)2
n°(cos * yog— o8 y2)

Finally, it is noted that the first link needs to be stopped
at exact period of input in order to keep it at its desired
position. It is also noted that once the second link crosses
over its target position, there is no return and it has to go
all the way around again. Therefore just before getting to
the target position the input frequency needs to be
increased. A fine step approach is shown in Fig. 8 at the
last stage of control.

4. CONCLUSIONS

Open loop vibrational control of underactuated mechanical
systems with free joints was investigated. The active joints

were first moved to their desired position via partial
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feedback linearization, and then periodic vibrations were
applied to them to move the remaining free joints. A
systematic way of obtaining averaged
generating equations was presented.

systems via the
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