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Abstracts Two different issues, design of reduced-order robust model predictive control and input signal design

for identification of a MIMO system, are addressed and design techniques basced on singular value decomposi-
tion(SVD) of the pulse repsonse circulant martrix(PRCM) are proposed. For this, we investigate the properties
of the PRCALL which is a periodic approximation of a linear discrete-time system, and show its SVD represents
the directional as well as the frequency decomposition of the svstem. Usefulness of the PRCM and effectiveness
of the proposed design techniques are demonstrated through numerical examples.
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1. Introduction

Traditionally. the frequency domain analyvsis has provided us
with deeper insight into the behaviors of linear systems and
enabled us to come up with many useful technicques for control
and identification. However. the frequency domain methods
are sometimes revealed to be cumbersome or hard to real-
ize, especially for MIMO systems. To extend the advantages
of the frequency domain methods to MIMO systems as well.
there needs to be a bridge which can conveniently link the the-
oretical results obtained in the frequency domain to practical
time domain algorithims. The objective of this research lies
in pursuing this issue by using the so-called pulse responsc
circulant matrix(PRCN). To demonstrate the usefulness of
the PRCM., we consider the following two problems as moti-
vating issues: design of reduced-order robust model predictive
control{MP (') and design of input signal for MIMO identifica-
tion. Before introducing what are meant by these problems,
we define the underlving MIMO system description.

Consider an n,-input/n,-output MIMO time-invariant
discrete-time syvstem.
—1 —1 -1
yiz:T )y =H{:z (=) (1)

Frequency response of the system can be obtained by simply
substituting = with «/*.

y(e ™) = He 7 ue ™), welo.2r) )

H is symmetric with respect to the Nyvquist {requency. v = 7.
Let the singular value decomposition(SVD) of H be H =
WDVT where each matrix is a function of ¢ ~*. Here. the
diagonal clements of D represent the directional gain of the
system at cach frequency.

Design of Robust Reduced-Order MPC: In MPC. input
moves over a control horizon are calculated at each time in-
stance such that the precicted output error over a prediction
horizon 1= minimized. This step usually requires heavy com-
putational load. especially as the number of inpurs as well as
the lengih of the control horizon increase. Nevertheless, when
there 1s model nucertainty, the output prediction goes awry
and the resulting input moves may lose its meaning. When

the model uncertainty arises in a high-frequency range. which
1s the usual case, msertion of a low-pass filter in the fecdback
path can enhance the robustness at the expense of perfor-
mance. However, this method not only imposes an additional
phase lag on the feedback loop but also asks additional com-
putation. One of the technigques to implement this idea while
not sufferring these drawbacks is to approximate the future
input moves as a lincar combination of low-frequency sinu-
soids and solve the QP(quadratic programming) with respect
to the associated coefficients.  In fact. a similar technique
has alveady been studied under the name of blocking[2] with
wavelet basis instead of sinusoids. The study, however, has
been carried out for SISO systems in the context of compu-
tation reduction.

In MIMO cases. divectionality is one more aspect that needs
to be considered relating to this issue. The low-gain direc-
tions are very often not easy to identify. Morcover, in most
regulation problems, the outputs need not be controlled along
low-gain directions, particularly at high frequencies. Brute
attempt to control all the modes of a system may lead to poor
closed-loop performance and sometimes even to instability[?].
Since complete information on the directional gain is con-
tained in the SVD of H(e™’¥), we can identify the input di-
rections from V(¢ 77*) corresponding to desired directional
gains. Hence, it can be thought that the input moves com-
posed of a linear combination of the desired directions will
solve thix problem with additional opportunity to further re-
duce the dimensionality of the QP. Conceptually, the idea
sounds obvious but the detailed procedure how to implement
is not clear. though.

Design of Inputs for MIMO Identification: One of the
recernit 1ssues in control-relavent identification has been arisen
concerning the directionality of a MIMO system. For appro-
priate design of a MIMO control system. correct identification
of the directional gains is more important. than the element-
wise accurate identification of the transfer function matrix.
For proper identification of low directional gains, it is nec-
essary to sufficiently excite the low directional modes of the
system. So far. two different approaches have been studied
concerming this issue: input design from open-loop experi-
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ments[4] and automatic input generation through closed-loop
experiments[3]. Currently, the former method has been lim-
ited only to resolving the steady state directionality. Exten-
sion to dvnamic state identification has been performed only
heuristically. On the other hand, the latter approach can re-
solve directionality up to dynamic modes. However, extension
to MIMO systems with more than two inputs and two outputs
is rather cumbersome and the requirement of tightly-tuned P1
control is thought to be a bit stringent. In this paper, we are
concerned with the first approach but with generalization to
the identification of dynamic states. Basically. the underlying
tdea is quite simple.

The system in (2) under random output noise can be written

as
yie %) = Hie 7 )u(e %) + B(e %) (3)
Substituting the S\'D into this equation leads to
(W'y)=D(Viu)+(W'E) (4)

i

Let w, and v, be the i*" column vectors of W and V, and d,
be the :'" diagonal element of D), respectively. Assume that
the noise projected on each output principal direction has the
same magnitude. Under this condition, we can see that the
input

u(e ) = a(w) Z(w(c_“)/r[,'(( )

t

(5)

vields the same signal to noise ratio to all output principal
directions at frequency w. Linearly combining the inputs ob-
tained at different frequencies and then converting it into the
time domain will produce an input signal which gives unbi-
ased excitation in all output directions. However, this ap-
proach i itself 1= not adequate to directly use unless a more
systematic and numernically effictent procedure is devised.

Particularly motivated by the above two issues, the ohjec-
tive of this research has been placed in the development of
a consistent and numerically efficient way which can bridge
design concepts for control and identification in the frequen-
cyv domain and their time domain realization. [t is believed
that the so-called pulse response circulant matrix (PRCM)
can play this role. In the following sections. we first intro-
duce what the PRCNM 1s and then investigate some important
properties of the PRC'M focusing on the relationship between
the SVD of the PRCM and the frequency response of the
system.

2. Pulse Response Circulant Matrix

2.1. Definitions and Some Fundamental Properties

Let hy € RUv M kb =
1.2--- be the k' pulse response of the system. Now consid-

Consider the syvstem given in (1).

er the periodic approximation of the system where an input
sequence with the period N produces a periodic output with
the same period. It is easy to see that such a system can be
represented by the following matrix form:

yik+1) h, hx oo s u{k)
y{k +2) ho h, ~+ ha u(k +1)
vk + N) hy hy_; --- hy ulk+ N —1)

— Yy=H\Ux (6)

It is obvious that (6} — (1} as N — oc. We call Hx the pulse
response circulant matrix(PRCM).

Discrete Fourier transform(DFT) of (6) converts the equation
into the frequency domain. For N discrete m—dimensional
vector sequences, the DFT operator can be described by the
following mN x mN matrix:

[fii] where fuy = (1/V/N)e tek—1t=0p
wr = (2x/NYk, kl=1,2,---N

Fun =
(7)

where L,,, is the m x m identity matrix. Taking the DFT on
both sides of (6) vields

(Fo,Yn)=(Fn HxFu) (Fr,Un) = Yy = Hnln

Ny

(8)

where ~ denotes the complex conjugate. The PRCM and its

"y

Fourter transform have the following fundamental properties:

1. For SISO systems, diagonal elements of Hy are the
cigenvalues of Hx[1].

<

Using (8) and extending the above property, it can be
shown that
~
H n=diag[hs]. lAlk:Z hje~2“rlg Oy X

=1

(9)

Forlarge V. H(e77¥) = Zfil hye 7!, Hence, we know
that ‘Hx contains H{(e™7%) evaluated at wi as its diag-
onal element. As N — oo, Hy — diag [H(e‘J“')].

2.2. Properties of SVD of PRCM

SISO case : I'irst we consider the case where n, = n, = 1.
Let’s represent. the SVD of Hy as

Hy = WyDyVE (10)
From (R),
Hy = (FWN)DN(FVy) (11)

where we drop the subscript 1 from F for notational simplic-
itv. Since both FWx and FVy are unitary, it is evident
that the above i1s the SVD of Hy. Moreover, since Hpy is
diaginal. we know that Dy is the absolute value (elemen-
twise) of Hxy with its elements rearranged in the order of
descending magnitude.  In other words, Dy represents the
amplitude ratio of the original system for a large N. Also,
from the property of the DFT matrix, it can be shown that
hy = hyop k= 1,2+ N — 1. Hence, Dy has the same
element at two consecutive positions except for k& = 0. Now
let v, and v,,41 be the input singular vectors correspond-
ing to two identical singular values. Also, let the associated
frequency with the singular value be wj.. Then through some-
what tedious but straightforward manipulations, we can show
that

Vin =

(12)
cos(wk(‘N — 1))

and v,, 41 is the sine complement of v,,. The indices m and
m + 1 may be interchanged. Similar results can be obtained
for w,, and Wi,41. It can be shown that

cos{—¢y)
1 cos(wr — dx)
(13)

cos(wg (N _ 1) — é%)



and w4 is the sine complement of w,, where @ is the
phase angle by the system at wi, i.e., (e 779" ) = pre /%,

Summerizing the above, we know that for a SISO system the
SVD of the PRCM when N is sufficiently large has the fol-
lowing properities:

—

. The singular values represents the amplitude ratios of
the svstem at discrete {requencies, wy = 27k /N.

2. Each of the right singular vectors is a discretized cosine

or sine function of the frequency of the corresponding

singular value. Same is true for the left singular vectors

but with a phase lag at the corresponding frequency.

The above tells us that the SVD of the PRCM of a SISO sys-
tem provides the complete information (but represented with
real values) about the frequency response of the system.

MIMO Case : The analysis in the SISO case can be easily
extended to the MINMO case. To state the conclusion first,
SVD of the PRCAI decomposes a MIMO system not only in-
to the frequencies but also into the principal directions. To
show this., we revisit (9) and let the SV of hele ™) he

by = Widi ¥y (14)
Then we can rewrite (9) as
Hn=diag[W]diagldx)diag[v{ =W yDaV L (15)

From the fact that Wy and Vv are unitary, and Dy is re-
al diagonal, we can see that (15) represents the SVD of ‘Hy
but not vet rearranged according to the magnitude. The el-
ements of Dy shows the directional gain (amplitude ratio)
of the system at each frequency. Now, let the SVD of the

PRCM be

Hy = WyDy VY (16)
Substitution of (9) and (15) mto (16) and rearrangement
vields
. A O & T T -
(Fu, W IDx(F,, VN) = WxDxVy (17)
Since both IA)X and Dy are real and diagonal. and the other
four matrices. F,, W F,,, Vv, Wy and V. are unitary.
we can see that D is just a reordering of the diagonal ele-
ments of Dy in the descending magnitude. Hence, Dy re-
tains the property of Dy as it is, and Vx and W contains
the corresponding input and output princapal directions at
the corresponding frquency.

3. Applications
3.1. Design of Robust Reduced-Order MPC

In section 1. we have briefly discussed how the design of ro-
bust reduced-order MPC can be approached in the frequency
domain. However. the idea was not easy to be practiced as
it stands. In this subsection, we show the PRCM plays as a
convenient vehicle in realizing the design concept. For this
purpose. we assume that the control horizon. A/, is chosen
to be sufficiently Jong (at least up to the settling time of the
process) such that the PRCN describes the process accurately
enough. In fact. this choice agrees with the generally accepted
MPC tuning rule.

We let AUy denote the future input moves that should be
|

optimized by QP at k. The number of decision variables

determined by QP is n, x M, which easily exceeds 100 in
multi-input cases. Let Har be the PRCM of the concerned
process. which is composed of h; through hps, and the SVD
Of H,\] I)G

Huy =WyDuyVyy (18)
Assume that the SV 1s partitioned as
D 0
(W, Wll][ 0] D/ ][V1 vi'. DDy (19)
Hence.
Y = W;D,/ViUy (20)

This implies that the future input movements projected onto
a lower-dimensional subspace, VI Uy, virtually determines
the future output movements. Since the column vectors of
V; are mutually orthogonal, we can approximate

AUL—U; ~ VIaHk = Bak,k (21)
Here, B is called a blocking matrix[2]. Substituting the above

into the MPC equations, the optimization problem is recast
to have a lower order decision variable. i.e., ag|x.

The robust design can be performed rather easily once the un-
desired frequency range is identified. Since the column vec-
tors in V; are discretized sine or cosine functions, we can
accomplish the intended low-pass filtering by taking out col-
umn vectors from V; associated with the unwanted frequency
range. This approach has advantages over the conventional
one using a low-pass filter in the feedback path in that no
phase lag is added and required computation is further re-
duced as a bonus.

The following examples demonstrates how the proposed de-
sign technique performs:

Example 1: The process and the nominal model are zero-
order hold equivalents of the following transfer functions with
sampling interval of 2:

1.7 2.2
. - S 20+ By
GI’ (q): (10 +1)[11% +s+1} 2;1 (22)
20541  (10s+1)(5:24s+1)
1.5
G (5) = TK;.—] 2
(s) = 1.2 (23)
20s+1

|l i 10 W
Fraquency trad'sec)

w i i o«
Fraquency radssc)

Comparison of the frequency characteristics.

Fraquency adsel
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The prediction as well as control horizons were chosen to be
90, and both input and output weighting matries were chosen
to be I. In Fig. 1, Bode plots for the diagonal elements of the
process and the nominal model are compared. As can be seen,
there exists significant. modelling error beyond 0.1 rad/sec. In
Fig.2, we compare the response of regular MPC and that of
reduced-order MPC. For reduced-order design, we construct-
ed a 180 x 180 PRCM using 90 2 x 2 pulse response coeflicient
matrices of the nominal model, and formulated the blocking
matrix using the first 12 column vectors of the input singular
matrix of the PRCM. Figure 2 compares the responses to set
point change. While the regular MPC fails to converge duce
to significant model error, the reduced-order MPC recovers
stability at some expense of dyvnamic vitality.

g e

Reduced-order MP(“

Regular MPC
Fig. 2. Output responses to set point change.

3.2. Input Design for MIMO System Identifica-
tion

In section 1, we have discussed how the input has to be de-
signed in the frequency domain in order to uniformly excite
the all the principal modes of a system. But, how to realize
the signal as a time sequence was not clear. Here, we show
that the PRCM enables us to directly substantiate the input
sequence retaining the frequency domain requirements intact.

Consider the following relationship where the output is cor-
rupted by random notse:

Yy=HxUy + Ex=WyDxViUx+Ey (24)
To have proper estimation of all the principal gains, the in-
put should be designed so that the signal to noise ratio of the
resulting output is sufficiently large in every output princi-
pal direction. This can be achieved using the following input

sequence:
gy XN v
~ Vi TEy
Uy & ; akdk > W\E\ (25)

for some large «vi. In practice, a priori information on Hy
is assumed to be unavaliable. Under this situation, we may
take the following steps:

step 1 Apply uniformly distributed excitations (e.g., PRBS)
to all inputs.

step 2 ldentify the system and formulate an estimate of the
PRCM, Hy. Take the SVD of Hy.

step 3 Construct the input signal according to (25) and ap-
ply it to the svstem.

step 4 Repeat step 2, 3 until drs converge.

In the first run, only the modes associated with large singular
values will be estimated correctly. Since the input directions
for the incorrectly estimated low-gain modes are orthogonal
to those of correctly estimated modes, repeated applications
of (25) will lead to balanced excitation for every mode. We
can concentrate the input energy on a certain desired frequen-
cy band, if exists, by adjusting ox.

Example 2: We consider the zero-order hold equivalent of
(22) with sampling period of 2 as the process to identify. [t
is assumed that zero-mean Gaussian random noise with vari-
ance of 0.5 is imposed on each outputs. Estimates of the

process model

HISYERTSY

N 2nd

{

~ o

1st

1 100 150 200 250 2na

Fig. 3. Singular values of the process and its estimates.

were obtained using the subspace identification technique
and PRCMs were derived from the estimated models with
N = 150. In the first experiment, independent PRBS with
amplitude 1.5 was applied for 500 sanmpling instances to each
input. For the subsequent experiments, o was chosen to be
2. In Fig. 2. we compare the singular values of the true pro-
cess PRUM with those of the estimates from the first and
second experiments. We can see the singular value estimates
converge to the true values almost perfectly in just two ex-
periments.

4. Conclusions

[n this paper, we have shown that the PRCM is a useful
and convenient vehicle in translating various design concept-
s in the frequency domain for control and identification of
a MIMO system into implementable algorithms in the time
domain.  Although the usefulness has been demonstrated
through only two independent design problems; design of
reduced-order robust model predictive control and input sig-
nal design for MIMO system identification, it is believed that
the PRCM will extend its applications to more diverse MIMO
control and identification problems.
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