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ABSTRACT

Practical applications of learning systems
usually involve complex domains exhibiting
nonlinear behavior and dilution by noise.
Consequently, an intelligent system must be able to
adapt to nonlinear processes as well as probabilistic
phenomena. An important class of application for a
knowledge based systems in prediction: forecasting
the future trajectory of a process as well as the
consequences of any decision made by the system.

This paper examines the robustness of data
mining tools under varying levels of noise while
predicting nonlinear processes in the form of chaotic
behavior. The evaluated models include the
perceptron neural network using backpropagation
(BPN), the recurrent neural network (RNN) and case
based reasoning (CBR). The concepts are
crystallized through a case study in predicting a
Henon process in the presence of various patterns of
noise.

Content Areas:Discovery, neural networks, case
based reasoning.

INTRODUCTION

Intelligent systems should be competent in
dealing not only with simple processes such as linear
input-output functions, but stochastic and nonlinear
behavior. A critical task in practical applications
ranging from business to engineering, lies in the
prediction of system behavior in the presence of
noise.

This paper presents a study of the robustness
of data mining tools under varying levels of noise
while predicting nonlinear processes which embody
chaotic behavior. The evaluated models include the
perceptron neural network using backpropagation

(BPN), the recurrent neural network (RNN), and
case based reasoning (CBR). The concepts are
crystallized through a case study in predicting a
Henon process in the presence of disparate patterns
of noise.

BACKGROUND

Real-world systems operate in complex
environments. The complexity arises from novelty,
nonlinearities, and the multitude of interactions
which arise when attempting to predict or control
various activities. In such a milieu, important
process variables can remain unidentified. Even
when they are identified, their interactions may
remain uncertain. This complexity and the
uncertainties which are often its derivatives limit the
effectiveness of traditional methods.

Fortunately, this situation can be remedied by
an adaptive methodology using knowledge
integration [5]. Over the past decade, a popular
methodology for implementing adaptive systems has
lain in the neural network. Despite its many
advantages such as autonomous learning in specific
contexts, the neural approach has its limitations.
Among the limitations are the slow rates of learning
and perhaps even more importantly, the implicit
nature of the learned skill. More specifically, a
neural network may yield the correct response to a
query but it cannot explain the result or justify its
“reasoning”.

In contrast, the use of explicit knowledge
allows for explanation and justification for the
benefit of other entities, including an interested
human observer. Examples of such high-level
representation lies with declarative logic or
production rules.
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METHODOLOGY

In real systems, the components tend to be
highly nonlinear; examples of nonlinearities are
found in the step functions of static friction, the
cycles of hysteresis, or the gaps of dead zones.
Mareover, the plant is often poorly understood and
therefore inadequately modeled. Fortunately, these
limitations can be addressed by knowledge based
systems which learn from experience.

Neural networks are characterized by
robustness and graceful degradation. The most
common type of neural network and training
procedure takes the form of backpropagation (BPN).
A backpropagation neural network with standard
connections responds to a given input pattern with
exactly the same output pattern every time the input
pattern is presented. In contrast, a recurrent neural
network (RNN) may respond differently to the same
input pattern at different times, depending upon the
patterns that have been presented as inputs in the
past.

A learning system should make increasingly
useful decisions as it accumulates experience. This
is the express goal of the work in case based
reasoning (CBR). The CBR methodology can be
effective even if the knowledge base is imperfect.
Certain techniques of automated learning, such as
explanation-based learning, work well only if a
strong domain theory exists. In contrast, CBR can
use many examples to overcome the gaps in a weak
domain theory while still taking advantage of the
fragmentary knowledge [9]. CBR can also be used
when the descriptions of the cases, as well as the
domain theory, are incomplete [11].

CASE STUDY

The utility of a learning approach to
forecasting a complex process may be demonstrated
through a case study in predicting a Henon process.
The inputs into the predictive system consist of two
sources: a chaotic signal and a noise source.

In the computational study, the primary data
streams consisted of the Henon process f,, the
noise process V, and mixtures of the two. Each
mixture consisted of a convex combination of the
Henon and noise processes:

x, =AH +(1-1,)v,

The convex weight A, was a function of time. As
shown in Figure 1, the three mixed modes consisted
of a downward step function, a square function, and
a tent function. These 3 modes, plus the pure Henon

and pure noise processes, constituted a total of 5
input data patterns. Each of the 5 signal modes was
digested by several learning methods, then predicted
out-of-sample.

The test phase involved 200 forecasts from
periods 2800 to 3000. The forecast performance by
signal mode and learning model is listed in Table 1
according to the metric of MAPE. Table 2 presents a
similar chart for the hit rate.

An analysis of variance for the data behind
Table 1 indicated that the differences due to signal
mode and to learning technique were both
significant. Moreover, the interaction effects were
also statistically significant.

A chi-square test for independence was
performed using the hit rates from Table 2. The
results revealed that interaction effects were
significant at level p < 0.03.

One interesting issue relates to the choice of a
good architecture for the CBR model. The metric of
MAPE was examined as a function of the locality L
(the number of neighbors) for each signal mode,
holding the input vector size fixed. The results
indicate that the optimal architecture depends in part
on the particular signal mode to be predicted.

The hit rate for CBR was also examined as a
function of the locality L with the input vector size
fixed. On the whole, the accuracy tended to rise with
the size of the neighborhood. To be more precise,
predictive performance depended both on the signal
mode and the size of the locale.

Table 3 presents a set of pairwise
comparisons across environmental scenarios for
BPN. For instance, the first cell indicates that the
MAPE for the pure Henon process using BPN was
0.011%, while that for the step mode was 0.113%.
Further, the difference was significant at p < 0.001.

The step mode was similar to the pure Henon
process, except that half of the signal was comprised
of noise after + = 1500. Consequently, a 50%
dilution of the Henon process by noise results in a
significant difference in forecasting accuracy. To
take another instance from Table 3, there was no
significant difference in performance between the
step and tent signal modes when BPN was employed.

Table 4 presents similar data for BPN
according to hit rates. Subsequently, Tables 5 and 6
enumerate the pairwise differences in environmental
scenarios for RNN according to the criteria of
MAPE and HR, respectively. A similar pair of charts
is presented in Tables 7 and 8 for CBR.

The hit rate measures the accuracy of
forecasts but ignores the mistakes. The proportions
of Type 1 and Type Il mistakes for the 5 signal
modes are listed for each learning technique in
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Table 9. The resuits indicate that CBR dominated
the other two techniques for the Henon signal.
Moreover, Table 9 highlights the fact that all
techniques performed well for the pure Henon mode.
Overall, Table 9 indicates the absence of a clear-cut
winner in the context of classification mistakes.

CONCLUSION

The complexity inherent in a learning system
for business and engineering applications can be
addressed by the judicious use of a spectrum of
methodologies from data mining. The utility of these
approaches in a complex, noisy environment was
tested through a simulation model. The results
indicate that learning systems tend to perform well
in nonlinear domains even in the presence of noise.
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Figure 1. Variation in weighting factor as a function
of time. The weighting factor A, is used to generate
a mixed input stream composed of primary and
noise sources.
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Table 1. Performance by technique and mixing mode
according to mean absolute percentage error (MAPE).
Tables 1 and 2 examine the issue of femporal
robustness; that is the stability of performance when a
technique is trained under a particular set of
conditions, then faces similar or different
circumstances.

Henon Step Square Tent Noise

BPN 0.011366 0.113030 0.112430 0.092931 0.177675

RNN { 0.010869 0.132187 0.127962 0.112924 0.187926

CBR 0.001123 0.104016 0.114119 0.084794 0.214353

Table 2. Performance by technique and mixing mode
according to hit rate (HR).

Henon Step Square Tent Noise

BPN 0.995 0.780 0.770 0.945 0.725

RNN 0.985 0.730 0.760 0.835 0.730

CBR 1.000 0.800 0.810 0.925 0.670

Table 3. Stability of BPN across environmental
scenarios, according to MAPE. Each cell contains 3
numbers in the format a : b (¢). Here a is the
performance metric in the training phase, 5 the
metric in the test phase, and ¢ the level of
significance due to a t-test for the difference of means.
Tables 3 through 8 represent an analysis of cross-
sectional robustness for each learning technique.

Step Square Tent Noise

Henon 0.011:0.113 0.011:0.112 0.011:0.092 0.011:0.177
(.000) (.000) (.000) (.000)

Step - 0.113:0.112 0.113:0.092 0.113:0.177
(.594) (.072) (.000)

Square - - 0.112:0.092 0.112:0.177
(021) (.002)

Tent - - - 0.092:0.177
(.000)

Table 4. Stability of BPN across environmental
scenarios, according to HR. Each cell contains 3
numbers in the format a : b (¢). Here a is the
performance metric in the training phase, b the
metric in the test phase, and c¢ the level of

significance due to a test of proportions.
Step Square Tent Noise

Henon 0.995:0.780 0.995:0.770 0.995:0.945 0.995:0.725
(1.02E-11) (2.82E-12) (0.003378) (7.33E-15)

Step - 0.780:0.770 0.780:0.945 0.780:0.725
(.810738) (1.66E-06) (.202505)

Square - - 0.770:0.945 0.770:0.725
(5.56E-07) (.300295)

Tent - - - 0.725:0.725

(3.1E-09)

Table 5. Stability of RNN across environmental
scenarios, according to MAPE.

Step Square Tent Noise

Henon 0.010:0.132 0.010:0.127 0.010:0.112 0.010:0.187
(000) (.000) (000) (.000)

Step - 0.132:0.127 0.132:0.112 0.132:0.187
(935) (.182) (591)

Square - - 0.127:0.112 0.127:0.187
(230) (.658)

Tent - - - 0.112:0.187
(477)

Table 6. RNN across environments, using HR.
Step Square Tent Noise

Hemon | 0985:0.730 | 0.985:0.760 | 0.985:0.835 | 0.985:0.730
(3.01E-13) | (1.53E-11) | (1.6E-07) | (3.01E-13)

Step - 0.730:0.760 | 0.730:0.835 | 0.730:0.730
(491268) (.010922) (3.01E-13)

Square - - 0.760:0.835 | 0.760:0.730
(.061998) (491268)

Tent - - - 0.835:0.730
(.010922)

Table 7. CBR across environments, using MAPE.

Step Square Tent Noise

Henon 0.001:0.104 0.001:0.114 0.001:0.084 0.001:0.214
(:000) (.000) (.000) (.000)

Step - 0.104:0.114 0.104:0.084 0.104:0.214
(079) (.698) (.000)

Square - - 0.114:0.084 0.114:0.214
(200 .000)

Tent - - - 0.084:0.214
(.000)

Table 8. CBR across environments, using HR.

Step Square Tent Noise
Henon 1.000:0.800 1.000:0.810 1.000:0.925 1.000:0.670
(2.63E-11) (2.63E-11) (1.4E-06) {.000)
Step - 0.800:0.810 0.800:0.925% 0.800:0.670
(1.000) (.012838) (.001128)
Square - - 0.810:0.925 0.810:0.670
(.012888) (.001128)
Tent - - - 0.925:0.670
(2.08E-08)

Table 9. Types of error by methodology for various
mode. Type 1 (false rejection) refers to a down
prediction when the actual index rises; and Type II
(false acceptance) refers to an up prediction when the
actual index falls. Each entry denotes the proportion
of mistakes over the trial period of 200 cases.

Method | BPN { RNN | CBR

Typel { Typell] Typel | TypeH [ Typel | Typell

Henon | 0.000 | 0.005 | 0.010 | 0.050 | 0.000 | 0.000

Step 0.115 | 0.105 | 0.235 | 0.035 | 0.070 | 0.145

Square | 0.115 | 0.115 ] 0.200 § 0.040 | 0.115 | 0.115

Tent §| 0.050 | 0.005 } 0.150 | 0.015 | 0.045 | 0.045

Noise | 0.200 | 0.075 { 0.205 | 0.065 | 0.255 | 0.125




