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ABSTRACT

In this paper we consider a Bayesian theoretic
approach to periodic incomplete preventive
maintenance with minimal repair at failure. We
assume that the system failure rate is increasing as the
frequency of PM increases and that the system is
replaced at the K-th PM under this maintenance
strategy. The optimal policies which minimize the
expected cost rates are discussed. We seek the
optimal periodic PM interval x and replacement time
K under a Weibull failure intensity. Assuming
suitable prior distribution for the Weibull parameters,
we derive the posterior distribution incorporating
failure data and obtain the updated optimal
replacement strategies.

1. Introduction

After the work by Barlow and Hunter(1960),
many researchers have proposed various maintenance
polices which include age replacement, block
replacement, periodic replacement with minimal
repair at failure etc.. Though age replacement and
condition based maintenance policies are studied by
many researchers, time based maintenance where
replacements are done at specified time intervals with
minimal repair at failure is the most popular
maintenance policy in heavy industries or steel
companies. These industries generally have periodic
preventive maintenance (PM) schedule two or three
times a month and have a major overhaul one or two
times a year. A simple periodic replacement policy
assumes that the system becomes new after each PM.
In reality, however, the improvement depends on the
age of the system as well as the cost and the
frequency of PM. Hence, the system has a different
failure distribution after each PM and generally the
failure rate increases with the frequency of PM.

Thus, in this paper, we assume that (i) PM are
done at kx (k=1, 2, ..., K), where x is a PM interval
and K is the number of PM’s until the complete
replacement, (ii) the system is replaced at K-th PM
for an infinite time span, i.e. Kx is the replacement
interval, (iii) the system undergoes minimal repair at

failure, hence the failure rate remains unchanged by
any repair, (iv) but the system failure rate, say Ay(t),
in the k-th period of PM is increased by k increasing
as such Ay(t) < Ay, (t) for any t > 0, which means that
the system is undergoing incomplete PM, (v) the
times for PM, minimal repair and teplacement are
negligible or reflected at costs. Under these
assumption, Nakagawa(1986) proposed a expected
cost rate function and proposed the optimal PM
interval and replacement time with deterministic
failure rate parameters.

We propose a Bayesian approach to periodic
incomplete PM and replacement policy for
determining the optimal PM interval and replacement
time interval with minimal repair at failure.
Minimizing the total cost is used as an object function
for infinite time span. The underlying assumption
behind such strategies is that an in-service failure of
the system is more costly than a planned replacement.
We assume that the failure behavior of system can be
described by a Weibull hazard function. One of the
rationales adopting the Bayesian approach is based on
the fact that the failure parameters vary over time as
the system is stablizing or deteriorating.

2. Cost Function and Prior Distribution of
Failure Parameters

To make the usual assumption of aging, we
model the failure process by assuming that the
number of system failure during k-th PM interval
which is the time interval between (k-1)-th PM and k-
th PM is a non-homogeneous Poisson process with
intensity function,

MO = wpeP! (1)

where B is unknown coefficient, and w, is represented

by or®~! with unknown o and known r coefficients

so that wy, < wy, (k=1, 2, ..., K) to ensure A (t) <
Ani(t). Thus, when coefficients o and B are given, the
mean failure rate function during the k-th PM interval
which is the conditional expectation of Ny(x), the
number of failures during k-th PM interval is

-193-



Ru(x) = ENy®)|ot,B1 = g4 (1)at
= jgark—lﬁtﬁ'ldt = ark-ixB. )]

Therefore, the probability of n, failures during k-th
PM in an interval of length x is given as

{Re ()}

!

Pr{Ny(x) =n,} = exp{- R (x)}. (3)

Py

From these, the distribution for Ty, the time to first
failure during k-th PM interval, could be written as
Pr{Ty, 2 xjo,B} = Pr{Ny(x) = 0}

= exp(— ark“xﬁ) 4)

and the probability density function of Ty is
fiaCtouB) = i BrP expwyP)
= onrk_IBtB_l exp(— cxrk_ltﬁ). &)

The underlying mode] for times to first failures during
the k-th PM is Weibull density function which is used
extensively in reliability and maintenance analysis.

With the failure intensity rate A (t) given at
equation (1), Nakagawa(1986) proposed the
following expected cost rate function:

K
a Xfghk (Ddt + (K —1)cy +c3

Clx, K)= —*=1 - (6)

where c, is the cost of minimal repair, c, is the cost of
PM, and c; is the cost of replacement with ¢ > c,.
When we assume that unknown coefficients o and f3
are given, which is the common approach in the
literature of Bayesian analysis for developing an
optimal PM interval and replacement strategy, the
expected cost per unit time is
E[C(x, K)o, B]

K
el El E{N(0)lot, B} + (K = ey +c3

=E
Kx

aaxP X -0, =)+ (K =Dy +¢3
Kx ’

= @)
Since our analysis involves expressing our
uncertainty about the unknown coefficients a and B
via prior distributions and coefficient r was assumed
as known constant in the previous expression of wy,
we select, as an appropriate prior for o, the gamma

distribution Gamma(a, b) given by
ba

a? e o >0 (8)
I'(a)

g(o) =

where a, b > 0 are the specified parameters. For the

prior distribution of the shape parameter 3, we use a
discrete distribution as in Mazzuchi(1996) by using a
discretization of the beta density on (B, ) since this
allows for great flexibility in representing prior
uncertainty. The beta density is given by

hpy= Ferd BB By -p*
LT By -p) !
for OSBLSBSBU (9)

where B, By, ¢, d > 0 are specified parameters. The
definition of distribution for B is

P =Pr{B=p} = [ h(B)dp (10)

where §;, = B + 8(2/-1)/2 and § = (By - Br)/m for ] =
1,2, ..,m

We assume that the quantities o and P are
independent initially and thus the joint prior
distribution is the product of the distributions of a
and P. Because B controls the rate at which the
system(or component) ages and for items which
experience aging as assumed at failure rate density,
must greater than 1. Thus, 3, may be assumed as |
and other parameters By, ¢, d may be guessed by an
expert or evaluated by effective methods. Once the
prior distribution for B has been established, the
parameters of prior of o could be obtained by
eliciting information about the time to first failure
during k-th PM and equating these with appropriate
expression from the predictive distribution

f(t) = lfllg" o1 (ot B Dglo0)dr - P

m qb?B kBt

k~1tﬁl)a+1 e (1

Al:l(b+r

3. The Optimal Periodic PM Interval and
Replacement Time

The optimal PM interval and replacement
strategy for the periodic PM with minimal repair at
failure is obtained as the value of replacement number

_ K and interval time x which minimizes the expected

cost
E[C(x, K)] = Eq gE[C(x, K)lo,, ]

K
-1
€ arrwl P (K =1)ey + 5

_ &b r-
2 e iy
=1

_ gcla(rK—l)xBI . (K—-Decy + 3 (12)
o bKx(r-1 ! Kx ‘

To find an x  which minimizes E[C(x, K)], we
differentiate right-hand side of the equation (12) with
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respect to x and set it equal to 0, then we should solve
the following equation (13) with numerical
techniques when K is given, which is elicited at the
following equations (18) or (19),

dE[C(x, K)] _
dx
mar®r-n, M (K =Dey e
2 . P[ =0.
=1 Kx
(13)

Since the second derivative of E[C(x, N)] should be
greater than 0 for the existence and uniqueness of x
satisfying above equation (13),
d2E[C(x, K)]
&’

K
m a r -1 -3
B, - T B3 p
Elcl(Bl XBy )Kb — !
L 2AK=Dey +2e3 a4
Kxd

the lower limit B, of B, should be greater than 2 or
less than 1, which is in order to be sufficient for the
convexity of E[C(x, K)}. From the equation (13), we
have

m ark -1
EI(B[ =Dy xProp, ={(K-1)Cz —03}/01 -

(15)

The left hand side of previous equation is also
increasing to infinity, since

%(B _1)5"‘&)(5/.1) |
1=1 ! b r—1 !

m

K‘_
2(31 I)Bl b -1

Ptopso, (16)

m a
51(51 -1 b

m arf -1
2 L@ =Dy R A
for t < x. Thus if B >1, for the satisfaction of
inequality (17) and assumption of an aging system,
then there exists a finite and unique x” which satisfies
previous equahty (13) or (15) for any integer K. Next,
to find an K~ which minimizes E[C(x, K)], we form
the inequalities
E[C(x, K+1)] 2 E[C(x, K)] and

E[C(x, K)] < E[C(x, K-1)], (18)
which imply

L(x, K) > (C3 - Cz)/Cl and
L(X, K'l) < (C3 - Cz)/Cl (19)

where
K

ma
Lex K)= KX oK. _yar limp,
=1

1= lb r—1
K=1,2,...). (20

and when K is 0, then L(x, K) = 0. From the
assumption that Ay(t) < Ay ((t) for any t>0, that is,
under the condition #>1, we have
L(x,K)-L(x, K-1) =
K(r -1k 1 ZxB’ P>0. (21
This means that L(x, K) is increasing in K and tends
to infinity as K goes to infinity. Hence there exists a
finite and unique K which satisfies above two
inequalities (20) and (21) for any x>0.To solve out
optimal x" and K', we must use the numerical method.
For the optimal x", dissimilar with the case of the
Nakagawa(1986), equation (13) or (15) can not have
a closed form.

To develop the concept of an adaptive
replacement strategy, we consider a system which is
minimally repaired upon at i-th failure t; i = 1,
2, ...,n, where ny is the number of failures during the
k-th PM interval, k = 1, 2, ..., K and receives periodic
PMs at kx, k =1, 2, ..., K-1 and is replaced by new
system at the end of the replacement cycle Kx. If
there are ny failures during the k-th PM interval and
system failures are observed at times O<t;;<t;;<...
<tp, HXH <L ok gy, <20 (K<

(K-t <(K-Dxttio<.. <(K-Dx+ ty, <Kx,  then

we may write the likelihood as

K| |n
£, py= TI Hﬁark”lﬁt,&l } : exp{— ark1xP }} ,
k=1 li=1

(22)

The posterior distribution of o and B, given

t KA = (4, gy s Uiy s s s r T2y > o WD,
tia, oy bny ) 1S obtained via Bayes theorem as

[ (o, Byt Komx)y

ot

x o8 exp{-ba} - P, (23)

K
o« nl:{nark lBltkl

k=1} =1

and by rearranging terms we could obtain the
posterior joint distribution of a and B as
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% k=1j=1
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k=1
x - (24)
Ia+ an
k=1
which can be written as the product of
Flalpy 8Ky and - PB=p 1R K))  where

F(aipy, &)y~ Gamma(a®, b") with a° = a +
K . K
Ynp. b =b + YrFIB
k=1 k=1
distribution of B can be obtained as

P{B=p,t k")) =p’

Bi-1
Zk lnk[Hnth] })l

and the posterior

k=1j=1
K AT
(b+ Zrkélxﬁ’j
_ k=1
— T @
S| T
. Bi= [T [Tty B
k=1/=1
)3 SR
i=1 K a+zk=lnk
(b+ Zrk‘lxﬁ’)
k=1

Thus the posterior distribution of o and f3 are no
longer independent. And revision of the expected cost

function E[C(x, K)|t(K’"K)] for the optimal PM

interval and replacement strategy with the posterior
distribution and the calculation of its optimal x" and
K" are achieved in a straight manner by replacing the
prior quantities a, b and P, by the posterior quantities
a,b and P, respectively, in equations (12), (15) and
(19).

4. Discussion

This paper uses an incomplete periodic PM
policies to introduce the concept that the optimal PM
interval and replacement and uncertainty analysis can
be possible easily by adopting a Baysian theoretic
view. The selection of Weibull failure density model

and the priors was mainly for illustrative purpose.
However, these are central in the theory of repairable
systems and preventive maintenance reliability theory.
In the context, though we assumed that the increasing
factor r of scaling parameter w, of failure density
function is known or given and should be greater than
1 for the existence and uniqueness of K, this value
could be given by expert or methods of the classical
parameter estimation. Further, many alternative
selection of the type of failure rate or the use of prior
distributions are possible.

ACKNOWLEDGEMENTS
This work was partially surpported by Korea

Science and Engineering Foundation through the
Automation Research Center at POSTECH.

REFERENCES
(1] Barlow, R. E., L. C. Hunter, “Optimum
Preventive Maintenance Policies”, Operations
Research, vol. 18, 1960, pp. 90-100.
[2] Barlow, R. E., F. Prochan, L. C. Hunter,

Mathematical Theory of Reliability, New York:

Wiley, 1965
[3] Mazzuchi, T. A., “A Bayesian Perspective on
Some Replacement Strategies”, Reliability

Engineering and System Safety, vol. 51, 1996, pp.
295-303.

[4] Nakagawa, T., “A Summary of Periodic
Replacement with Minimal Repair at Failure”,
Journal of the Operations Research Society of
Japan, vol. 24, no. 3, 1981, pp. 213-227.

[5] Nakagawa, T., “Periodic and Sequential
Preventive Maintenance Policies™, J. Appl. Prob.,
vol. 23, 1986, pp. 536-542.

[6] Valdez-Flores, C., R. E. Feldman, “A Survey of
Preventive Maintenance Models for Stochastically
Deteriorating  Single-Unit  Systems”, Naval
Research Logistics, vol. 36, 1989, pp. 419-446.

-196 -



