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1. INTRODUCTION

It is common to find in a time series of hydrologic data that an observation at one time
period is strongly dependant with the observation in the preceding time period. Correlation
function is frequently used to quantity this dependence. The correlation function hitherto
measures only the linear dependence, which may be sufficient in most situations to explain the
dependence, but in general it is desirable to consider also nonlinear relationships between
different variables. Given that there are feedbacks and interactions between hydrologic
processes it is of interest to look for a measure of nonlinear dependence.

The motivation for considering the mutual information is its capability to measure a general
dependence between two variables. If the two variables are independent then the mutual
information between them is zero. However, if the two variables are strongly dependent then
the mutual information between them is large. The mutual information measures the general
dependence of two variables while the correlation function measures the linear dependence.
For example, there is a strong evidence of a nonlinear association between nutrient level and
the number of fish in Figure 1.

Simple Linear Regression
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Figure 1. Data on Fish Population vs. Nutrients.
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Note that the strength of the linear relationship is almost zero (i.e. r2 = 0), but the mutual
information shows a strong relationship between the variables. Therefore, mutual information
provides a better criterion for the measure of the dependence between variables than the
correlation function.. A detailed investigation of the advantages of the mutual information
versus the correlation function is contained in Li (1990).

Another objective of mutual information (M.I.) analysis is to measure how dependent the

values of x(t+1) are on the values of x(t) where 1 is a delay time. There has been a growing
interest in phase-portrait reconstruction from time series data in fields as diverse as hydrology
(Moon and Lall{1996], Abarbanel et al.[1996]) and hydrodynamics (Brandstater et al. [1983]).

* Department of Civil Engineering, Seoul City University

-286-



If we can get an appropriate delay time T at  .ich the mutual information is almost zero then
multi-dimensional phase portraits could be  astructed from measurements of a single scalar
time series. In this approach portraits are « astructed by expanding a scalar time series x(t)

into a vector time series X(t) using time de: ys T: X(t) = {x{(t), X,(t), X3(t), ..., Xp4(t}}, where
xp(1) = x(t+M1). If the delay time is too siuall, the reconstructed attractor is restricted to the

diagonal of the reconstruction space because x(t) and x(t+t) will basically be the same. On the

other hand if 7 is chosen too large then the attractor coordinates are uncorrelated and the system
is chaotic. Thus, all relevant information for phase space reconstruction is lost since
neighboring trajectories diverge, and averaging in time and/or space is no longer useful.

No criteria for choosing T exists in literature until Fraser and Swinney [1986] proposed the
use of mutual information (M.I.) as a criterion for choosing T and argue that this provides an
excellent criterion for choosing t in most systems. They suggest that value of T that produces
the first local minimum of mutual information. This choice is better than choosing T as the lag
at which autocorrelation function (ACF) first passes through zero, as the ACF only measures
the linear dependence, while the M.1. measures the general dependence of two variables and
hence provides a better criterion (Graf and Elbert, 1990) for the choice of 1.

Fraser and Swinney (1986) developed the use of muitivariate histogram for the estimation
of M.I. and subsequent choosing of T. Here we propose the use of nonparametric multivariate

kernel density estimator for the estimation of M.I. Our investigations show that this is
particularly advantageous with small data sets.

2. DEFINITION OF THE MUTUAL INFORMATION

Mutual Information (Fraser and Swinney, 1986) provides a general measure of dependence
between two variables. Let us denote the time series of the two variables as sy, 85, ..., ...8p,
and qy, 43, ~Qj> g where n is the record length, and the sampling rate ot is fixed. The

mutual information between observations s; and qj is defined in bits as:

(1

P (s, q))
syt q g

where Ps,q(si»(]j) is the joint probability density of s and q evaluated at (s;, qj)’ and Pg(sj) and
Py(qj) are the marginal probability densities of s and g evaluated at s; and qj respectively.

Where overall dependence between the two series is of interest, one can define
(analogously to linear correlation) the Average Mutual Information Is,q as:

P, (5.9,
L= 2P (s, q)) log,| ==~ 2
S_q 2} . o(8iq;) OgZ[PS(S,-)Pq(qJ-)J (2)

This measure is useful for identifying components in multivariate sampling that seem to be
related or independent. A particular recent use (Martinerie et al., 1992; Abarbanel, 1994; Gao,
1994) is the choice of an appropriate delay parameter while reconstructing a state space from an
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experimental time series.

Kernel density estimation is a nonparametric method for estimating probability densities.
We learn from the statistical literature (Silverman, 1986, Devroye and Gyorfi, 1985; Scott,
1992) that kernel density estimates can be superior to the histogram in terms of (1) better Mean
Square Error rate of convergence of the estimate to the underlying density, (2) insensitivity to
the choice of origin, and (3) ability to specify more sophisticated window shapes than the
rectangular window for "binning" or frequency counting.

A kemel density estimate (KDE) of a vector y is given (Silverman, 1986) as:

fy) = LY Kw )
i=1

(y-y)' SHy-yi)
h2

where u =

&)

where, K(u) is a multivariate kernel function., y = [yl,yz,..,yd]T is the d dimensional random

vector whose density is being estimated; y; = [y} i,y2i,..,ydj]T, i =1 to n are the n sample
vectors, h is the kernel bandwidth and S is the covariance matrix of the y;. The kernel function

K(u) is required to be a valid probability density function. In this case we use the multivariate
Gaussian probability density function for K(u) which is given as,

K(u) = 1 /2 6
® (2m)¥2 hd det(S)!/2 exp(-u/2) ©

3. DATA SETS

In order to demonstrate the application of the KDE to estimation of M.I. and the subsequent

picking of the optimal delay time T, one simulated time series and two real time series are
chosen. The details of the data sets are given in Table 1.

Table 1. Description of data sets used.
Data from 500 data points were generated from the AR (1) model:
AR(1) model Xt=px¢.1 + \/—1—-—;)—2 N(0,1) where N(0,1) refers to a standard
Gaussian density and p = 0.85.

GSL Monthly | Monthly volume of Great Salt Lake for the period from Nov.
Volume data 1847 to Dec. 1996.

Southern Monthly mean difference in Sea Level Pressure (SLP) at Tahiti
Oscillation and Darwin from Sep. 1932 to Nov. 1993, 735 data points.
Index (SOT) SOI = SLP(Tahiti)-SLP(Darwin)

4. RESULTS AND CONCLUSION

The mutual information is calculated for up to lags 100 for each of the data sets using the
KDE and ACF up to 100 lags is also calculated for the data sets. Moon et al. (1995) estimated
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the M.I. for several simulated data sets using the histogram method (FSH) of Fraser and
Swinney (1986) for comparison with the KDE approach. They represent that KDE provides
an attractive alternative to the FSH method for estimating the average sample mutual
information. Our results are consistent with these reported in Moon et al. (1995). For selected
cases, it was possible to analytically compute the requisite probabilities and use them to derive

the expected sample estimates of Ixt . In these cases, we found that the KDE estimates

X
* M-T
were numerically quite close to those from the analytical expressions.

The results for the data from AR(1) model is shown in Figure 2. Note that for an AR model

the joint and marginal densities, th X ‘c(')’ th(.), and th 'c(') respectively are all Gaussians

and hence Ixt X €80 be calculated directly by fitting Gaussian distributions to the data. From

Figure 2, we observe that there is little difference in the analytical and KDE estimates of Ixt’ X

< The lag t* would be selected as 11 from KDE and from the analytical expression.

In Figure 3(a), ACF of GSL monthly volume data is shown. The M.I. for KDE suggests a

lag of 7 for 1.

The next data set we considered Southern Oscillation Index (SOI). The mutual information
of KDE shows that the first minimum is at the lag of 11 months in Figure 4(b).

The purpose of the experiment was to test the multivariate kernel density estimator (KDE)

for picking the optimal delay time T and to compare its performance with Fraser and Swenney’
histogram (FSH) (1986). The mutual information of Fraser and Swenney’s histogram (FSH)
dose not seem consistent (Moon et al., 1995). It may be from the histogram drawback about
the choice of bin width which, primarily, controls the amount of smoothing inherent in the
procedure. The usefulness of the nonparametric multivariate kernel density estimator in
analyzing the mutual information is shown. The nonparametric multivariate kernel density
estimator (KDE) provides more reliable mutual information.

Another purpose for this work was to investigate the optimum delay time T for nonlinear

hydrologic systems. If we know an appropriate T then multi-dimensional phase portraits can
be constructed from a single scalar time series.
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Fig. 2. 1 from KDE and from fitted Gaussian densities for the AR(1) data.
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Figure 3 (a). ACF of GSL monthly volume time series.
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Figure 3 (b). The mutual information of KDE
for the Great Salt Lake monthly volume time series.
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Figure 4 (a). ACF of Southern Oscillation Index (SOI).
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Figure 4 (b). The mutual information of KDE for the Southern Oscillation Index (SOI).
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