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Abstract

In this paper, a new multigrid method is developed to solve the reactor eigenvalue
problems. The new algorithm can be used in any matrix equations concerned with the
eigenvalue problem. The finite difference neutron diffusion problem is considered for
demonstration of the performance of the new muitigrid algorithm. The numerical results
show that the new multigrid algorithm works well and requires much shorter ( 7T~10
times) computing time compaired to the production code VENTURE.

I. Introduction

Solving the reactor eigenvalue problems involves two-level iterations: inner and outer
iterations. In general, inner iteration takes much longer time than outer iteration.
Therefore, an efficient inner iteration algorithm is required in reducing the computing
time. SOR (or LSOR) and the Chebyshev acceleration are popularly used in solving the
reactor eigenvalue problem in inner and outer iterations, respecti\fely[l]. However, the
convergence rate of those acceleration techniques is fairly slow when the problem size
is large as in the fine-mesh finite difference calculations.

Among many numerical solvers, multigrid method is considered as one of the most
efficient methods. Concerning the computational complexity, the multigrid method needs
O(N) operations in solving the elliptic boundary value problems with N number of
unknowns, while most of the other methods have O(N?) with @>1l. Meanwhile in
application of the multigrid method[2] to reactor problems, most works so far were
concerned with the fixed-source probleml[3, 4]. In this paper, we investigate the multigrid
method from the viewpoint of the eigenvalue problem, in particular, for dominance ratio

estimation in outer iteration and compare its performance with that of a production code.
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II. Methodology

The objective of the present work is to develop an efficient multigrid algorithm for
solving the finite difference matrix equations for the multigroup neutron diffusion
equations. As is usual, the within—group diffusion equation in the inner iteration is
solved by using a muitigrid method in the present approach.

It is essential for high performance of a multigrid algorithm that coarse-grid
operators be good approximations and at the same time be obtained easily. There are
two kinds of coarsening methods: the Galerkin method and the straightforward finite
difference. Accounting for heterogeneity of the reactor core, the Galerkin coarse-gird
approximation[5] is adopted here. Although the Galerkin coarse-grid approximation is a
time-consuming process compaired to the finite difference approximation, the coarse—grid
operators are set up only once and stored before the main calculation begins.
Furthermore it works better in the case with rapidly varying coefficient as in the

reactor core. In the Galerkin coarsening scheme, the coarse grid operator is obtained as:
AS=RIMAPL, L 1=0,1,2, .., o)
where Af, is the diffusion operator in [-th grid for g—th neutron group, Rf” and Pfﬂ

denote the restriction and prolongation operator, respectively. Note that /=0 indicates
the fine-grid operator.

Taking into account numerical efficiency, the coarse-grid operator used in a multigrid
method should be sparse as much as possible. However, at the same time, it should
preserve properties of the original fine-grid operator as much as possible. To construct
the coarse-grid operators, we used linear prolongation and corresponding 7-point
restriction operators, which give 7-point coarse-grid operators for both 5-point and
7-point fine-grid operators. Note that 5-point conventional finite difference method is
used in this work. In Fig. 1, graphical diagrams for the prolongation and restriction
operators are showp. It is worthwhile to note that prolongation is linear interpolation
and the 7-point restriction operator is its adjoint. The two operators result in a sparser

matrix than all other linear interpolation operators.
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Fig. 1. Prolongation and restriction operators



Performance of a multigrid algorithm also depends on both multigrid cycles and
smoothing schemes used. Numerical tests for typical multigrid cycles such as V-, W-,
and saw-tooth cycles and smoothing schemes showed that the saw-tooth cycle
combined with an ILU (Incomplete LU decomposition)[5, 6] is slightly better than others.
In the saw-tooth cycle, each grid is visited only once in the course of post-smoothing

as shown in Fig. 2.
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Fig. 2. Saw-tooth multigrid cycle in 4-grid case

No matter how fast the inner iteration converges, the overall computing time highly
depends on the acceleration scheme in the outer iteration. As is well known,
convergence of the ouier iteration is governed by the dominance ratio, which is not
known a priori, and the two-parameter Chebyshev method(1] ié widely used as in the
VENTURE code[7]. However, this method has a drawback in that the dominance ratio
should be continuously updated during outer iterations. Meanwhile, a good initial
dominance ratio can be estimated when using the multigrid algorithm. For instance, let

us consider the two-group diffusion equations. Applying the Galerkin coarsening
procedure to the fission operator F4 and scattering operator Z‘i,g', we can get the

following reduced-order (coarsened) eigenvalue equations:

ATS] =5 (FT$7+ FEop) (22)
eff
Ardr =357, (2b)

where m> 0,

The dominance ratio estimated with Eq. (2) can be used as the initial dominance
ratio for the original fine-grid equations. Besides the dominance ratio, the eigenvectors
of Eq. (2) can serve as good initial guesses for the original fine-grid system. Through
numerical experiments we note that the reduced-order eigenvalue problem m=2,3,4,
depending on the finest-grid system, provides fairly good dominance ratio and initial

eigenvectors for the original fine-grid eigensystem. It is worthwhile to note that the
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reduced-order eigenvalue calculation need not be performed completely. Consequently,

this pre-calculation can be done cheaply.

III. Results and Discussion

Based on the above algorithm, a mesh-comered finite difference code was
programmed and compared with the VENTURE code. Note that VENTURE uses a
mesh-centered finite difference scheme, giving a slightly different solution even in the
case of the same mesh size. As a benchmark problem, the 2-D Zion 1 corel8] was
analyzed on a SUN workstation (SUN Sparc Station 2). In the calculations, convergence
criteria were as follows: 1.E-7 for the eigenvalue, and 1.E-5 for pointwise fission source
{multigrid method) and fluxes (VENTURE). In the multigrid algorithm, the number of
saw-tooth cycles per inner iteration was one. Table I compares performance of the
multigrid algorithm and VENTURE.

Table 1. Numerical results for the 2-D Zion 1 Core problem

Mesh System 72x72 128 x 128 144 x 144

Dominance

Ratio in | conven- new® |COmVER—| o fconven-|
Chebyshev | tional tional tional

Acceleration

Multigrid | Eigenvalue® | 1.274835 | 1.274835 |1.274873| 1.274873 | 1.274887 | 1.274887
Method

No. of Outer

Iterations 34 A 36 % 35 %

Computing

Time (sec) 23 20 76 60 94 78

Dominance
Ratio in
Chebyshev
Acceleration

VENTURE | Eigenvalue 1.275070 1.274946 1.274916

No. of Outer
Iterations

conventional conventional conventional

41 49 58

Computing

Time (sec) 178 669 96

? Reference eigenvalue[8] = 1.274890
® Pre-calculation with reduced-order eigensystem

As shown in Table I, the newly—developed multigrid algorithm is much faster than
the VENTURE code. It should be noted that the reduction in the computing time



becomes larger (7 ~ 10 times) as the number of unknowns increases. Furthermore, the
pre-calculation with reduced-order eigenvalue equations turns out to be effective for the
reactor eigenvalue problem.

The correct dominance ratio of the Zion 1 core is ~ 0.9613. For this problem, the
reduced-order eigensystem analysis gave 0.9595 ~ 0.9605 as the initial dominance ratio
for the original fine-grid eigensystem. To find a good dominance ratio, the coarse-grid
systems should provide good approximation to the orignial fine-grid system. Various
numerical tests show that dominance ratio obtained with /=2~3 is good enough, ie.,
coarse-grid operators with [=2~3 preserve the higher eigenmodes of the original
operator.

Generally, performance of a multigrid method depends on the number of multigrid
cycles per inner iteration. Numerical tests show that one saw-tooth cycle is best from
the computational point of view. Performing several multigrid cycles in each inner
iteration might reduce the number of outer iterations. However, reduction in the number

of outer iterations is marginal, consequently the actual computing time slightly increases.

V1. Conclustions

An efficient multigrid algorithm for the reactor eigenvalue problems was developed
and applied to solving the finite differece neutron diffusion equations. Unlike the
conventional application of the multigrid method, new method is based on the
coarse-grid eigenvalue equations. The 7-point Galerkin coarsening procesure is used and
the dominance ratio for the Chebyshev acceleration is approximated by using the
coarse—grid eigenvalue equations.

To show the peformance of the new multigrid algorithm, the Zion-1 reactor problem
was solved by the new method. Numerical results confirmed that the newly developed
algorithm was much faster than the VENTURE code. .

In this paper, an ILU was used as the smoothing method. If more efficient smoothing
scheme (e.g., combination of ILU and conjugate gradient method) is used, the

peformance of the new multigrid method would be better.
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