NFL-H../SMC 의 안정도 증명: Part 4

이 상 성 ° 박종근

이 주 장

서울대학교 전기공학부

한국과학기술원 전기공학과

Stability Proof of NFL-H_∞/SMC : Part 4

Sang-Seung Lee^o and Jong-Keun Park

School of Electrical Engineering Seoul National University

[Abstract] In this paper, a stability proof of the closed-loop stability for the nonlinear feedback linearization- H_{∞} /sliding mode controller (NFL- H_{∞} /SMC) is done by a Lyapunov function candidate using an addition form of the sliding surface vector and the estimation error.

Keywords: nonlinear feedback linearization- H_{∞} /sliding mode controller, separation principle, Lyapunov function, separation principle, stability proof

1. Introduction

The standard Dole, Glover, Khargoneker, and Francis (abbr.: DGKF 1989) H_{∞} controller ($H_{\infty}C$) [1] has been extended to the nonlinear feedback linearization- H_{∞} /sliding mode controller (NFL- H_{∞} /SMC) [2-18]. In this paper, the closed-loop stability is proved by a Lyapunov function candidate using an addition form of the sliding surface vector and the estimation error.

2. NFL-H_m/SMC

The state equations under worst case based on nonlinear feedback linearization (NFL) [19] are

$$z(t) = T(x(t)) \tag{1}$$

$$\dot{z}(t) = Az(t) + B_1 w_{word}(t) + B_2 u(t)$$
 (2)

$$p(t) = C_1 z(t) + D_{11} w_{ward}(t) + D_{12} u(t)$$
(3)

$$y(t) = C_2 z(t) + D_{21} w_{worst}(t) + D_{22} u(t)$$
(4)

The H_{∞} estimator state equation based on NFL is [1]

Ju-Jang Lee

Dept. of Electrical Engineering KAIST

$$\dot{\hat{z}}(t) = A\hat{z}(t) + B_1 \hat{w}_{\text{mort}}(t) + Z_n K_s(y(t) - \hat{y}(t))$$
 (5)

where
$$\hat{w}_{worn}(t) = \gamma^{-2} B_i^T X_{\infty} \hat{z}(t)$$
 (6)

$$\hat{y}(t) = \left[C_2 + \gamma^{-2} D_{21} B_1^T X_{\infty} \right] \hat{z}(t) \tag{7}$$

The controller gain K_{ϵ} is given by

$$K_{\varepsilon} = \widetilde{D}_{12} \left(B_2^T X_{\infty} + D_{12}^T C_1 \right) \tag{8}$$

where
$$\widetilde{D}_{i,j} = \left(D_{i,j}^T D_{i,j}\right)^{-1}$$
 (9)

The estimator gain K_{\perp} is given by

$$K_{\epsilon} = \left(Y_{m}C_{\gamma}^{T} + B_{1}D_{\gamma 1}^{T}\right)\widetilde{D}_{\gamma 1} \tag{10}$$

where
$$\widetilde{D}_{21} = \left(D_{21}D_{21}^{T}\right)^{-1}$$
 (11)

The term Z_{\perp} is given by

$$Z_{\infty} = \left(I - \gamma^{-2} Y_{\infty} X_{\infty}\right)^{-1} \tag{12}$$

The controller Riccati equation term X_{∞} is

$$X_{\bullet} = Ric \begin{bmatrix} A - B_1 \widetilde{D}_{11} D_{12}^T C_1 & \gamma^{-2} B_1 B_1^T - B_1 \widetilde{D}_{12} B_2^T \\ -\widetilde{C}_1^T \widetilde{C}_1 & -\left(A - B_2 \widetilde{D}_{12} D_{12}^T C_1\right)^T \end{bmatrix}$$
(13)

where
$$\tilde{C}_{1} = (I - D_{12} \tilde{D}_{12} D_{12}^{T}) C_{1}$$
 (14)

The estimator Riccati equation term is

$$Y_{\alpha} = Ric \begin{bmatrix} \left(A - B_{1} \widetilde{D}_{11} D_{11}^{T} C_{1} \right)^{T} & \gamma^{-2} C_{1} C_{1}^{T} - C_{1}^{T} \widetilde{D}_{11} C_{1} \\ - \widetilde{B}_{1} \widetilde{B}_{1}^{T} & - \left(A - B_{1} \widetilde{D}_{11}^{T} \widetilde{D}_{11} C_{1} \right) \end{bmatrix}$$

$$(15)$$

where
$$\widetilde{B}_1 = B_1 \left(I - D_{21}^T \widetilde{D}_{21} D_{21} \right)$$
 (16)

The estimated control input based on NFL is $u_c(t) = -K_c\hat{z}(t)$ (17)

The closed loop system can be expressed as

$$\begin{bmatrix} \dot{z}(t) \\ \dot{z}(t) \end{bmatrix} = \begin{bmatrix} A & -B_2 K_c \\ Z_{\infty} K_c C_1 & A_1 \end{bmatrix} \begin{bmatrix} z(t) \\ \dot{z}(t) \end{bmatrix} + \begin{bmatrix} B_1 \\ Z_{\infty} K_c D_{21} \end{bmatrix} w_{worn}(t) \quad (20)$$

$$\begin{bmatrix} p(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} C_1 & -D_{12}K_c \\ C_2 & 0 \end{bmatrix} \begin{bmatrix} z(t) \\ \hat{z}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ D_{21} \end{bmatrix} w_{wors}(t) \tag{21}$$

where
$$A_1 := A - B_2 K_c + \gamma^{-2} B_1 B_1^T X_a$$

 $-Z_L K_1 (C_1 + \gamma^{-2} D_1 B_1^T X_a)$ (22)

The state equation based on NFL is

$$\dot{z}(t) = Az(t) + B_1 w_{worn}(t) + B_2 u(t)
= (A + B_1 (\gamma^{-2} B_1^T X_\infty)) z(t) + B_2 u(t)$$
(23)

The estimation error equation is

$$e(t) = z(t) - \hat{z}(t) \tag{28}$$

The differential estimation error equation is

$$\dot{e}(t) = \dot{z}(t) - \dot{\bar{z}}(t) \tag{29}$$

$$= -\left(A - \gamma^{-2} B_1 B_1^T X_{\infty} - Z_{\infty} K_{\bullet} \left(C_2 - \gamma^{-2} D_{21} B_1^T X_{\infty}\right)\right) e(t) \quad (30)$$

Or, from equation (2), (17) and (23), we get $\dot{z}(t) = Az(t) + B_1 w_{word}(t) + B_2 u(t)$

$$= (A - B_2 K_C)z(t) - B_2 K_C e(t) + B_1 w_{word}(t)$$
 (31)

The complete closed loop dynamics is

$$\begin{bmatrix} \dot{z}(t) \\ \dot{e}(t) \end{bmatrix} = \begin{bmatrix} A - B_2 K_c & -B_2 K_c \\ 0 & A_3 \end{bmatrix} \begin{bmatrix} z(t) \\ e(t) \end{bmatrix} + \begin{bmatrix} B_1 \\ 0 \end{bmatrix} w_{word}(t)$$
 (32)

where

$$A_{3} := -\left(A - \gamma^{-2} B_{1} B_{1}^{T} X_{\infty} - Z_{\infty} K_{\epsilon} \left(C_{2} - \gamma^{-2} D_{21} B_{1}^{T} X_{\infty}\right)\right) \tag{33}$$

Theorem 1: Consider the state equations (2-4) based on NFL for the regulation problem under a worst case and the H_{∞} estimator (5) based on NFL. The equal controller gain K_{W-SMC}^{equal} and estimator gain $Z_{\infty}K_{\varepsilon}$ under a worst case may be selected separately for desired closed-loop behavior.

Proof. To show the separation property of the closed-loop system, the estimation error equation and differential estimation error equation

$$\begin{split} e &= z - \hat{z} \\ \dot{e} &= \dot{z} - \hat{z} \\ &= Az + B_1 w_{wort} + B_2 \hat{u}_{Hw \mid SMC}^{equal} \\ &- \Big[A \hat{z} + B_2 \hat{u}_{Hw \mid SMC}^{equal} + B_1 \hat{w}_{wort} + Z_w K_s \Big(y - \hat{y} \Big) \Big] \\ &= Az + B_1 w_{wort} - A \hat{z} - B_1 \hat{w}_{wort} - Z_w K_s y + Z_w K_s \hat{y} \\ &= - \Big(A - y^{-2} B_1 B_1^T X_w - Z_w K_s \Big(C_2 - y^{-2} D_{21} B_1^T X_w \Big) \Big) e \\ \dot{z} &= Az + B_1 w_{wort} + B_2 \hat{u}_{Hw \mid SMC}^{equal} = Az + B_1 w_{wort} - B_2 K_{w - SMC}^{equal} \hat{z} \Big(e + z \Big) \\ &= \Big(A - B_2 K_{w - SMC}^{equal} \Big) z - B_2 K_{w - SMC}^{equal} e + B_1 w_{wort} \end{split}$$

The complete closed loop dynamics is

$$\begin{bmatrix} \dot{z} \\ \dot{e} \end{bmatrix} = \begin{bmatrix} A - B_2 K_{W-SMC}^{equal} & -B_2 K_{W-SMC}^{equal} \\ 0 & A_5 \end{bmatrix} \begin{bmatrix} z \\ e \end{bmatrix} + \begin{bmatrix} B_1 \\ 0 \end{bmatrix} w_{worn}$$

where
$$A_{1} := -\left(A - \gamma^{-2}B_{1}B_{1}^{T}X_{\infty} - Z_{\infty}K_{\epsilon}\left(C_{2} - \gamma^{-2}D_{21}B_{1}^{T}X_{\infty}\right)\right)$$

The characteristic values is

$$\Delta(s) = \det\begin{pmatrix} sI - A + B_2 K_{W-SMC}^{equal} & -B_2 K_{W-SMC}^{equal} \\ 0 & sI - A_s \end{pmatrix}$$
$$= |sI - (A - B_2 K_{W-SMC}^{equal})| \cdot |sI - A_s|$$

The *separation principle* is satisfied. This completes the proof of this theorem.

The state equation based on NFL under a worst case is

$$\dot{z}(t) = Az(t) + B_1 w_{worn}(t) + B_2 u(t)
= (A + B_1 (\gamma^{-2} B_1^T X_w)) z(t) + B_2 u(t)$$
(36)

The Lyapunov's function candidate is chosen by $V(z(t)) = \sigma^2(z(t))/2$ (37)

The time derivative of V(z(t)) can be expressed as

$$\dot{V}(z(t)) = \sigma(z(t))\dot{\sigma}(z(t))
= G_{SS}^{T}z(t)G_{SS}^{T}\dot{z}(t)
= G_{SS}^{T}z(t)G_{SS}^{T} \left[\left(A + B_{1}(\gamma^{-2}B_{1}^{T}X_{\infty})\right)z(t) + B_{2}u_{H_{\infty},SMC}^{equal}(t) \right]
\leq 0$$
(38)

The control inputs with switching function are

$$u_{H_{W/SMC}}^{*}(t) \ge -\left(G_{SS}^{T}B_{2}\right)^{-1} \left[G_{SS}^{T}\left(A + B_{1}\left(\gamma^{-2}B_{1}^{T}X_{*}\right)\right)\right] z(t)$$

$$for \quad G_{SS}^{T}z(t) > 0$$
(39)

$$u_{H_{\infty/SMC}}^{\tau}(t) \le -\left(G_{SS}^{\tau}B_{2}\right)^{-1} \left[G_{SS}^{\tau}\left(A + B_{1}\left(\gamma^{-2}B_{1}^{\tau}X_{\infty}\right)\right)\right] z(t)$$

$$for \quad G_{cc}^{\tau}z(t) < 0$$
(40)

The control input with sign function is

$$u_{H_{\infty/SMC}}^{u_{SS}}(t) = -\left(G_{SS}^{T}B_{2}\right)^{-1} \left[G_{SS}^{T}\left(A + B_{1}\left(\gamma^{-2}B_{1}^{T}X_{\infty}\right)\right)\right] z(t)sign\left(\sigma(z(t))\right)$$
(41)

The equation (41) can be simplified as follows:

$$u_{Hoo/SMC}^{ngn}(t) = -K_{W-SMC}^{equal}z(t) \ sign(\sigma(z(t)))$$
 (42)

$$K_{W-SMC}^{equal} := \left(G_{SS}^T B_2\right)^{-1} \left[G_{SS}^T \left(A + B_1 \left(\gamma^{-2} B_1^T X_{\infty}\right)\right)\right] \tag{43}$$

Finally, the estimated control input vector is

$$\hat{u}_{H_{\infty},SMC}^{ign}(t) = -K_{W-SMC}^{equal}\hat{z}(t)sign(\sigma(\hat{z}(t)))$$
subject to, $sign(\sigma(\hat{z}(t))) = 1$ for $\sigma(\hat{z}(t)) > 0$

$$sign(\sigma(\hat{z}(t))) = 0$$
 for $\sigma(\hat{z}(t)) = 0$

$$sign(\sigma(\hat{z}(t))) = -1$$
 for $\sigma(\hat{z}(t)) < 0$

Theorem 2: Consider the state equations based on NFL for the regulation problem under a worst case (2-4) and the H_{∞} estimator based on NFL (5). The estimated SMC law with sign function based on NFL is guaranteed an *asymptotically stable* for the system (2)

$$\hat{u}_{H_{m}/SMC}^{sign} = -K_{W-SMC}^{equal} \hat{z} sign(\sigma(\hat{z}))$$

$$K_{W-SMC}^{equal} := (G_{SS}^T B_2)^{-1} [G_{SS}^T (A + B_1(\gamma^{-2} B_1^T X_m))]$$

$$subject \ to, \quad sign(\sigma(\hat{z}(t))) = 1 \quad for \quad \sigma(\hat{z}(t)) > 0$$

$$sign(\sigma(\hat{z}(t))) = 0 \quad for \quad \sigma(\hat{z}(t)) = 0$$

$$sign(\sigma(\hat{z}(t))) = -1 \quad for \quad \sigma(\hat{z}(t)) < 0$$

Proof. Let us define the estimation error $e = z - \hat{z}$

$$\begin{split} &-\left[A\hat{z}+B_{1}\hat{u}_{H_{m/SMC}}^{ngn}+B_{1}\hat{w}_{worn}+Z_{w}K_{e}(y-\hat{y})\right]\\ &=Az+B_{1}w_{worn}-A\hat{z}-B_{1}\hat{w}_{worn}-Z_{w}K_{e}y+Z_{w}K_{e}\hat{y}\\ &=\left(A-Z_{w}K_{e}C_{2}\right)z-\left(A-Z_{w}K_{e}C_{2}\right)\hat{z}+B_{1}w_{worn}\\ &-Z_{w}K_{e}D_{21}w_{worn}-B_{1}\hat{w}_{worn}+Z_{w}K_{e}D_{21}\hat{w}_{worn}\\ &\text{Let }\hat{z}:=e+z\\ &\dot{e}=\left(A-Z_{w}K_{e}C_{2}\right)z-\left(A-Z_{w}K_{e}C_{2}\right)\left(e+z\right)+B_{1}\gamma^{-2}B_{1}^{T}X_{w}z\\ &-Z_{w}K_{e}D_{21}\gamma^{-2}B_{1}^{T}X_{w}z-B_{1}\gamma^{-2}B_{1}^{T}X_{w}\hat{z}+Z_{w}K_{e}D_{21}\gamma^{-2}B_{1}^{T}X_{w}\hat{z}\\ &=-\left(A-\gamma^{-2}B_{1}B_{1}^{T}X_{w}-Z_{w}K_{e}\left(C_{2}-\gamma^{-2}D_{11}B_{1}^{T}X_{w}\right)\right)e \end{split}$$

 $\dot{e} = \dot{z} - \dot{\hat{z}} = Az + B_1 w_{\text{max}} + B_2 \hat{u}_{\text{max}}^{\text{sign}}$

Lyapunov's function candidate and derivative is chosen by

$$V = \frac{1}{2}\sigma^{T}\sigma + \frac{1}{2}e^{T}e$$

$$\dot{V} = \sigma^{T}\dot{\sigma} + e^{T}\dot{e} = \sigma^{T}\left(G_{SS}^{T}\dot{z}\right)$$

$$-e^{T}\left(A - \gamma^{-2}B_{1}B_{1}^{T}X_{-} - Z_{-}K_{*}\left(C_{2} - \gamma^{-2}D_{11}B_{1}^{T}X_{-}\right)\right)e$$

$$= \sigma^{T}G_{SS}^{T}\left(A\hat{z} + B_{1}\left(-K_{W-SMC}^{sepol}\hat{z}sign(\sigma(\hat{z}))\right) + B_{1}\hat{w}_{worn}$$

$$+ Z_{-}K_{*}C_{1}\hat{z} - Z_{-}K_{*}D_{11}\hat{w}_{worn} + Z_{-}K_{*}D_{12}\left(-K_{W-SMC}^{sepol}\hat{z}sign(\sigma(\hat{z}))\right)$$

$$-Z_{-}K_{*}C_{1}\hat{z} - Z_{-}K_{*}D_{11}\hat{w}_{worn} - Z_{-}K_{*}D_{12}\left(-K_{W-SMC}^{sepol}\hat{z}sign(\sigma(\hat{z}))\right)$$

$$-e^{T}\left(A - \gamma^{-2}B_{1}B_{1}^{T}X_{-} - Z_{-}K_{*}\left(C_{1} - \gamma^{-2}D_{11}B_{1}^{T}X_{-}\right)\right)e$$

$$Let \ w_{worn} = \gamma^{-2}B_{1}^{T}X_{-}z(t), \ and \ \hat{w}_{worn} = \gamma^{-2}B_{1}^{T}X_{-}\hat{z}(t)$$

$$\dot{V} = \sigma^{T}G_{SS}^{T}\left(A\hat{z} + B_{1}\left(-K_{W-SMC}^{sepol}\hat{z}sign(\sigma(\hat{z}))\right) + B_{1}\gamma^{-2}B_{1}^{T}X_{-}\hat{z}(t)$$

$$+Z_{-}K_{*}C_{1}\hat{z} - Z_{-}K_{*}D_{11}\gamma^{-2}B_{1}^{T}X_{-}\hat{z}$$

$$-Z_{-}K_{*}C_{1}\hat{z} - Z_{-}K_{*}D_{11}\gamma^{-2}B_{1}^{T}X_{-}\hat{z}$$

$$-e^{T}\left(A - \gamma^{-2}B_{1}B_{1}^{T}X_{-} - Z_{-}K_{*}\left(C_{1} - \gamma^{-2}D_{11}B_{1}^{T}X_{-}\right)\right)e$$

$$= \sigma^{T}G_{SS}^{T}\left[A - B_{1}K_{W-SMC}^{sepol}sign(\sigma(\hat{z})) + B_{1}\gamma^{-2}B_{1}^{T}X_{-}\right]\hat{z}$$

$$+\sigma^{T}G_{SS}^{T}\left(Z_{-}K_{*}\left(C_{1} + D_{21}\gamma^{-2}B_{1}^{T}X_{-}\right)\right)e$$

$$-e^{T}\left(A - \gamma^{-2}B_{1}B_{1}^{T}X_{-} - Z_{-}K_{*}\left(C_{2} - \gamma^{-2}D_{21}B_{1}^{T}X_{-}\right)\right)e$$

$$Let \ K_{W-SMC}^{sepol}:=\left(G_{SS}^{T}B_{2}\right)^{-1}\left[G_{SS}^{T}\left(A + B_{1}\gamma^{-2}B_{1}^{T}X_{-}\right)\right],$$

$$\dot{V} = \sigma^{T}G_{SS}^{T}\left[A - B_{2}\left(G_{SS}^{T}B_{1}\right)^{-1}\left[G_{SS}^{T}\left(A + B_{1}\gamma^{-2}B_{1}^{T}X_{-}\right)\right]sign(\sigma(\hat{z}))$$

$$+B_{1}\gamma^{-2}B_{1}^{T}X_{-}\right[\hat{z} + \sigma^{T}G_{SS}^{T}\left(Z_{-}K_{*}\left(C_{2} + D_{21}\gamma^{-2}B_{1}^{T}X_{-}\right)\right)e$$

$$=\sigma^{T}G_{SS}^{T}A\left[1 - sign(\sigma(\hat{z}))\right]\hat{z}$$

$$+\sigma^{T}G_{SS}^{T}A\left[1 - sign(\sigma(\hat{z}))\right]\hat{z}$$

$$+\sigma^{T}G_{SS}^{T}\left(Z_{-}K_{*}\left(C_{2} + D_{21}\gamma^{-2}B_{1}^{T}X_{-}\right)\right)e$$

$$=\sigma^{T}\left(A - \gamma^{-2}B_{1}B_{1}^{T}X_{-} - Z_{-}K_{*}\left(C_{2} - \gamma^{-2}D_{21}B_{1}^{T}X_{-}\right)\right)e$$

$$-e^{T}\left(A - \gamma^{-2}B_{1}B_{1}^{T}X_{-} - Z_{-}K_{1}\left(C_{2} - \gamma^{-2}D_{21}B_{1}^{T}X_{-}\right)\right)e$$

$$-e^{T}\left(A - \gamma^{-2}B_{1}B_{1}^{T}X_{-} - Z_{2}B_{1}^{T}X_{-}\right)e$$

$$-e^{T}\left(A$$

The estimation error is $e \to 0$ as $t \to 0$.

$$\dot{V} = \sigma^{\tau} G_{ss}^{\tau} A \Big[1 - sign(\sigma(\hat{z})) \Big] \hat{z}$$

$$+G_{ss}^{\tau}B_{i}\gamma^{-2}B_{i}^{\tau}X_{\infty}\left(1-sign(\sigma(\hat{z}))\right)\hat{z} \leq 0$$

subject to,

if
$$\sigma > 0$$
, $\dot{V} = 0$

if
$$\sigma = 0$$
, $\dot{V} = 0$

if
$$\sigma < 0$$
, $\dot{V} \le -2kG_{ss}^{T}A\hat{z} - 2kG_{ss}^{T}B_{1}\gamma^{-2}B_{1}^{T}X_{*}\hat{z} < 0$

k is positive constant.

The above condition is satisfied on negative definite, and is asymptotically stable. completes the proof of this theorem.

3. Conclusion

A separation theorem and a stability proof of a nonlinear feedback linearization-Har/sliding mode controller (NFL-ROO/SMC) have been done.

References

- [1] J. C. Doyle, K. Glover, P. P. Khargonekar and B. A. Francis, "State-space solutions to standard H_2 and H_∞ control problems", IEEE Trans. on Automatic Control, Vol. 34, No. 8, pp. 831-847, Aug., 1989.
- V. I. Utkin, "Variable structure systems with sliding modes", IEEE Trans. on
- Automatic Control, AC-22, No.2, pp. 212-222, April, 1977.

 W. C. Chan and Y. Y. Hsu, "An optimal variable structure stabilizer for power system stabilization", IEEE Trans. on Power Apparatus and Systems, Vol. PAS-102, pp. 1738-1746, Jun., 1983.
- J. J. Lee, "Optimal multidimensional variable structure controller for multiinterconnected power system", KIEE Trans., Vol. 38, No. 9, pp. 671-683,
- M. L. Kothari, J. Nanda and K. Bhattacharya, 'Design of variable structure power system stabilizers with desired eigenvalues in the sliding mode', IEE Proc. C, Vol. 140, No. 4, pp. 263-268, 1993.
- S. S. Lee, J. K. Park and J. J. Lee, "Sliding mode-MFAC power system stabilizer", Jour. of KIEE, Vol. 5, No. 1, pp. 1-7, Mar., 1992
 S. S. Lee and J. K. Park, "Sliding mode-model following power system
- stabilizer including closed-loop feedback", Jour. of KIEE, Vol. 9, No. 3, pp. 132-138, Sep., 1996 S. S. Lee, J. K. Park et al., "Multimachine stabilizer using sliding mode-model
- following including closed-loop feedback", Jour. of KIEE, Vol. 9, No. 4, pp. 191-197, Dec., 1996.
- S. S. Lee and J. K. Park, "Sliding mode power system stabilizer based on LQR: Part I", Jour. of EEIS, Vol. 1, No. 3, pp. 32-38, 1996.
- [10] S. S. Lee and J. K. Park, "Sliding mode observer power system stabilizer based on linear full-order observer : Part II", Jour. of EEIS, Vol. 1, No. 3, pp. 39-45, 1996.
- [11] S. S. Lee and J. K. Park, "Full-order observer-based sliding mode power system stabilizer with desired eigenvalue-assignment for unmeasurable state
- system samples with observed regulator-assignment of unlessurable state variables", Jour. of EEIS, Vol. 2, No. 2, pp. 36-42, 1997.
 S. S. Lee and J. K. Park, "New sliding mode observer-model following power system stabilizer including CLF for unneasurable state variables", Jour. of EEIS, Vol. 2, No. 3, pp. 88-94, 1997.
 S. S. Lee and J. K. Park, "Multimachine stabilizer using sliding mode.
- observer-model following including CLF for unmeasurable state variables", Jour. of EEIS, Vol. 2, No. 4, pp. 53-58, 1997.
- [14] S. S. Lee and J. K. Park, "H., observer-based sliding mode power system stabilizer for unmeasurable state variables", Jour. of EEIS, Vol. 2, No. 1, pp.
- [15] S. S. Lee and J. K. Park, "Nonlinear feedback linearization-full order observer/sliding mode controller design for improving transient stability in a power system", Jour. of EEIS, Vol. 3, No. 2, pp. 184-192, 1998.
- [16] S. S. Lee and J. K. Park, "Nonlinear feedback linearization-Ha/sliding mode controller design for improving transient stability in a power system", Jour. of EEIS, Vol. 3, No. 2, pp. 193-201, 1998.
- [17] S. S. Lee and J. K. Park, "Design of power system stabilizer using observer/sliding mode, observer/sliding mode-model following and Ha/sliding mode controllers for small-signal stability study", Inter. Jour. of Electrical Power & Energy Systems, accepted, 1998.
 [18] S. S. Lee and J. K. Park, "Design of reduced-order observer-based variable
- structure power system stabilizer for unmeasurable state variables. IEE PROC.-GEN., TRANS. AND DISTRIB., accepted, 1998.
- [19] R. Marino and P. Tomei, "Nonlinear control design", Prentice-Hall Press,